Classes | |
| class | AdaBoost | 
| AdaBoost (adaptive boosting).  More... | |
| class | AdaBoost_ECOC | 
| AdaBoost.ECC with exponential cost and Hamming distance.  More... | |
| class | AdaBoost_ERP | 
| AdaBoost.ERP (AdaBoost.ECC with Re-Partitioning).  More... | |
| class | Aggregating | 
| An abstract class for aggregating.  More... | |
| class | Bagging | 
| Bagging (boostrap aggregating).  More... | |
| class | Boosting | 
| Boosting generates a linear combination of hypotheses.  More... | |
| struct | _boost_gd | 
| class | Cascade | 
| Aggregate hypotheses in a cascade (sequential) way.  More... | |
| class | CGBoost | 
| CGBoost (Conjugate Gradient Boosting).  More... | |
| struct | _boost_cg | 
| class | CrossVal | 
| A combination of cross-validation and model selection.  More... | |
| class | vFoldCrossVal | 
| v-fold cross validation.  More... | |
| class | HoldoutCrossVal | 
| Randomized holdout cross-validation.  More... | |
| class | DataFeeder | 
| Feed (random splitted) training and testing data.  More... | |
| class | dataset | 
| Class template for storing, retrieving, and manipulating a vector of input-output style data.  More... | |
| class | FeedForwardNN | 
| class | LearnModel | 
| A unified interface for learning models.  More... | |
| class | LPBoost | 
| LPBoost (Linear-Programming Boosting).  More... | |
| struct | MgnCost | 
| Cost proxy used in MgnBoost.  More... | |
| class | MgnBoost | 
| MgnBoost (margin maximizing boosting).  More... | |
| struct | _mgn_gd | 
| class | MultiClass_ECOC | 
| Multiclass classification using error-correcting output code.  More... | |
| class | NNLayer | 
| A layer in a neural network.  More... | |
| struct | _search | 
| Interface used in iterative optimization algorithms.  More... | |
| struct | _gradient_descent | 
| Gradient descent.  More... | |
| struct | _gd_weightdecay | 
| Gradient descent with weight decay.  More... | |
| struct | _gd_momentum | 
| Gradient descent with momentum.  More... | |
| struct | _gd_adaptive | 
| struct | _line_search | 
| struct | _conjugate_gradient | 
| class | Ordinal_BLE | 
| Ordinal regression via binary learning on extended examples.  More... | |
| class | Perceptron | 
| Perceptron models a type of artificial neural network that consists of only one neuron, invented by Frank Rosenblatt in 1957.  More... | |
| class | Pulse | 
| Multi-transition pulse functions (step functions).  More... | |
| class | Stump | 
| Decision stump.  More... | |
| class | SVM | 
Namespaces | |
| namespace | cost | 
| Cost functions and their derivatives.  | |
| namespace | details | 
| namespace | kernel | 
| Kernels (inner product in some space).  | |
| namespace | op | 
| Operators used in optimization.  | |
Typedefs | |
| typedef std::vector< std::vector< REAL > >  | WMAT | 
| typedef std::vector< DataWgt > | JointWgt | 
| typedef const_shared_ptr< JointWgt >  | pJointWgt | 
| typedef vFoldCrossVal | kFoldCrossVal | 
| typedef std::vector< REAL > | Input | 
| typedef std::vector< REAL > | Output | 
| typedef dataset< Input, Output > | DataSet | 
| typedef std::vector< REAL > | DataWgt | 
| typedef const_shared_ptr< DataSet >  | pDataSet | 
| typedef const_shared_ptr< DataWgt >  | pDataWgt | 
| typedef var_shared_ptr< LearnModel > | pLearnModel | 
| typedef const_shared_ptr< LearnModel >  | pcLearnModel | 
| typedef std::vector< int > | ECOC_VECTOR | 
| typedef std::vector< ECOC_VECTOR > | ECOC_TABLE | 
| typedef std::vector< std::vector< REAL > >  | EXT_TABLE | 
| typedef std::map< REAL, REAL  >::iterator  | MI | 
| typedef svm_node * | p_svm_node | 
Enumerations | |
| enum | ECOC_TYPE { NO_TYPE, ONE_VS_ONE, ONE_VS_ALL } | 
| enum | BLE_TYPE { MULTI_THRESHOLD, BLE_DEFAULT = MULTI_THRESHOLD } | 
Functions | |
| DataSet * | load_data (std::istream &, UINT, UINT, UINT) | 
| Load a data set from a stream.   | |
| DataSet * | load_data (std::istream &is, UINT n) | 
| bool | lp_add_hypothesis (LPX *lp, int *ndx, double *val, const LearnModel &lm, const pDataWgt &pdw=0, REAL maxe=0) | 
| REAL | lp_solve (LPX *lp, pDataWgt &pdw) | 
| template<class SEARCH> | |
| void | iterative_optimize (SEARCH s) | 
| Main search routine.   | |
| void | update_wgt (RVEC &wgt, const RVEC &dir, const RMAT &X, const RVEC &y) | 
| void | dset_extract (const pDataSet &ptd, RMAT &X, RVEC &y) | 
| void | dset_mult_wgt (const pDataWgt &ptw, RVEC &y) | 
| UINT | randcdf (REAL r, const RVEC &cdf) | 
| p_svm_node | fill_svm_node (const Input &x, struct svm_node *pool) | 
The idea is to separate the learning model and optimization techniques.
Using vectorop.h for default vector operation
      
  | 
  
| 
 
 Definition at line 26 of file learnmodel.h.  | 
  
      
  | 
  
| 
 
 Definition at line 27 of file learnmodel.h.  | 
  
      
  | 
  
| 
 
 Definition at line 21 of file multiclass_ecoc.h.  | 
  
      
  | 
  
| 
 
 Definition at line 20 of file multiclass_ecoc.h.  | 
  
      
  | 
  
| 
 
 Definition at line 15 of file ordinal_ble.h.  | 
  
      
  | 
  
| 
 
 Definition at line 23 of file learnmodel.h.  | 
  
      
  | 
  
| 
 
 Definition at line 16 of file adaboost_ecoc.h.  | 
  
      
  | 
  
| 
 
 Definition at line 115 of file crossval.h.  | 
  
      
  | 
  
| 
 
  | 
  
      
  | 
  
| 
 
 Definition at line 24 of file learnmodel.h.  | 
  
      
  | 
  
| 
 
  | 
  
      
  | 
  
| 
 
 Definition at line 196 of file learnmodel.h.  | 
  
      
  | 
  
| 
 
 Definition at line 28 of file learnmodel.h.  | 
  
      
  | 
  
| 
 
 Definition at line 29 of file learnmodel.h.  | 
  
      
  | 
  
| 
 
 Definition at line 17 of file adaboost_ecoc.h.  | 
  
      
  | 
  
| 
 
 Definition at line 195 of file learnmodel.h.  | 
  
      
  | 
  
| 
 
 Definition at line 42 of file adaboost_ecoc.cpp.  | 
  
      
  | 
  
| 
 
 Definition at line 16 of file ordinal_ble.h.  | 
  
      
  | 
  
| 
 
 Definition at line 22 of file multiclass_ecoc.h.  | 
  
      
  | 
  ||||||||||||||||
| 
 
 Definition at line 127 of file perceptron.cpp. Referenced by Perceptron::train().  | 
  
      
  | 
  ||||||||||||
| 
 
 Definition at line 137 of file perceptron.cpp.  | 
  
      
  | 
  ||||||||||||
| 
 
 Definition at line 92 of file svm.cpp. Referenced by SVM::kernel(), SVM::operator()(), and SVM::signed_margin().  | 
  
      
  | 
  
| 
 Main search routine. 
 Definition at line 74 of file optimize.h. Referenced by FeedForwardNN::train(), MgnBoost::train_gd(), CGBoost::train_gd(), and Boosting::train_gd().  | 
  
      
  | 
  ||||||||||||
| 
 An easier-to-use version, where the output dimension is fixed at 1, and the input dimension is auto-detected. This version requires that each row of stream is should be a sample. Definition at line 46 of file learnmodel.cpp. References dataset::append(), and dataset::size().  | 
  
      
  | 
  ||||||||||||||||||||
| 
 Load a data set from a stream. Each sample consists of first the input and then the output. Numbers are separated by spaces. 
 
 Definition at line 37 of file learnmodel.cpp. Referenced by DataFeeder::DataFeeder().  | 
  
      
  | 
  ||||||||||||||||||||||||||||
| 
 
 Definition at line 22 of file lpboost.cpp. References LearnModel::c_error(), LearnModel::get_output(), LearnModel::train_data(), and U.  | 
  
      
  | 
  ||||||||||||
| 
 
 Definition at line 49 of file lpboost.cpp.  | 
  
      
  | 
  ||||||||||||
| 
 
 Definition at line 271 of file perceptron.cpp.  | 
  
      
  | 
  ||||||||||||||||||||
| 
 Update the weight wgt along the direction dir. If necessary, the whole wgt will be negated. Definition at line 79 of file perceptron.cpp. References DOTPROD.  | 
  
 1.4.6