#include <stump.h>
Inheritance diagram for Stump:


Public Member Functions | |
| Stump (UINT n_in=0) | |
| Stump (std::istream &is) | |
| virtual const id_t & | id () const | 
| virtual Stump * | create () const | 
| Create a new object using the default constructor.   | |
| virtual Stump * | clone () const | 
| Create a new object by replicating itself.   | |
| UINT | index () const | 
| REAL | threshold () const | 
| bool | direction () const | 
| bool | soft_threshold () const | 
| void | use_soft_threshold (bool s=true) | 
| virtual bool | support_weighted_data () const | 
| Whether the learning model/algorithm supports unequally weighted data.   | |
| virtual void | train () | 
| Train with preset data set and sample weight.   | |
| virtual Output | operator() (const Input &) const | 
Static Public Member Functions | |
| static REAL | train_1d (const std::vector< REAL > &, const std::vector< REAL > &, REAL, bool &, bool &, REAL &, REAL &) | 
| Find the optimal threshold and direction (prefer the middle thresholds).   | |
| static REAL | train_1d (const std::vector< REAL > &, const std::vector< REAL > &) | 
| Find the optimal threshold for positive direction.   | |
Protected Member Functions | |
| virtual bool | serialize (std::ostream &, ver_list &) const | 
| virtual bool | unserialize (std::istream &, ver_list &, const id_t &=NIL_ID) | 
Definition at line 18 of file stump.h.
      
  | 
  
| 
 
 Definition at line 25 of file stump.h. Referenced by Stump::clone(), and Stump::create().  | 
  
      
  | 
  
| 
 
  | 
  
      
  | 
  
| 
 Create a new object by replicating itself. 
 
 return new Derived(*this); 
 Implements LearnModel. Definition at line 31 of file stump.h. References Stump::Stump().  | 
  
      
  | 
  
| 
 Create a new object using the default constructor. The code for a derived class Derived is always return new Derived(); Implements LearnModel. Definition at line 30 of file stump.h. References Stump::Stump().  | 
  
      
  | 
  
| 
 
  | 
  
      
  | 
  
| 
 
 
 Implements Object.  | 
  
      
  | 
  
| 
 
  | 
  
      
  | 
  
| 
 
 Implements LearnModel. Definition at line 194 of file stump.cpp. References LearnModel::n_input().  | 
  
      
  | 
  ||||||||||||
| 
 
 Reimplemented from LearnModel. Definition at line 16 of file stump.cpp. References SERIALIZE_PARENT.  | 
  
      
  | 
  
| 
 
  | 
  
      
  | 
  
| 
 Whether the learning model/algorithm supports unequally weighted data. 
 
 
 Reimplemented from LearnModel.  | 
  
      
  | 
  
| 
 
  | 
  
      
  | 
  
| 
 Train with preset data set and sample weight. 
 Implements LearnModel. Definition at line 160 of file stump.cpp. References LearnModel::_n_in, LearnModel::n_samples, LearnModel::ptd, LearnModel::ptw, LearnModel::set_dimensions(), and Stump::train_1d().  | 
  
      
  | 
  ||||||||||||
| 
 Find the optimal threshold for positive direction. 
 Definition at line 43 of file stump.cpp. References INFINITESIMAL, and INFINITY.  | 
  
      
  | 
  ||||||||||||||||||||||||||||||||
| 
 Find the optimal threshold and direction (prefer the middle thresholds). 
 Definition at line 82 of file stump.cpp. References INFINITESIMAL. Referenced by Stump::train().  | 
  
      
  | 
  ||||||||||||||||
| 
 
 Reimplemented from LearnModel. Definition at line 22 of file stump.cpp. References LearnModel::_n_in, LearnModel::_n_out, Object::NIL_ID, and UNSERIALIZE_PARENT.  | 
  
      
  | 
  
| 
 
  | 
  
 1.4.6