#include <ordinal_ble.h>
Inheritance diagram for Ordinal_BLE:


Public Member Functions | |
| Ordinal_BLE () | |
| Ordinal_BLE (const Ordinal_BLE &) | |
| const Ordinal_BLE & | operator= (const Ordinal_BLE &) | 
| Ordinal_BLE (std::istream &is) | |
| virtual const id_t & | id () const | 
| virtual Ordinal_BLE * | create () const | 
| Create a new object using the default constructor.   | |
| virtual Ordinal_BLE * | clone () const | 
| Create a new object by replicating itself.   | |
| void | set_model (const LearnModel &) | 
| set the underlying learning model   | |
| const LearnModel & | model () const | 
| the underlying model   | |
| UINT | n_rank () const | 
| the number of ranks from the training set   | |
| virtual bool | support_weighted_data () const | 
| Whether the learning model/algorithm supports unequally weighted data.   | |
| virtual REAL | c_error (const Output &out, const Output &y) const | 
| Error measure for classification problems.   | |
| virtual REAL | r_error (const Output &out, const Output &y) const | 
| Error measure for regression problems.   | |
| virtual void | set_train_data (const pDataSet &, const pDataWgt &=0) | 
| Set the data set and sample weight to be used in training.   | |
| virtual void | train () | 
| Train with preset data set and sample weight.   | |
| virtual void | reset () | 
| virtual Output | operator() (const Input &) const | 
| bool | full_extension () const | 
| void | set_full_extension (bool=true) | 
| const ECOC_TABLE & | ECOC_table () const | 
| const EXT_TABLE & | extension_table () const | 
| void | set_tables (const ECOC_TABLE &, const EXT_TABLE &) | 
| void | set_tables (BLE_TYPE, UINT) | 
Protected Member Functions | |
| void | extend_input (const Input &, UINT, Input &) const | 
| void | extend_example (const Input &, UINT, UINT, Input &, REAL &) const | 
| void | extend_data () | 
| virtual REAL | ECOC_distance (const Output &, const ECOC_VECTOR &) const | 
| const std::vector< REAL > & | distances (const Input &) const | 
| virtual bool | serialize (std::ostream &, ver_list &) const | 
| virtual bool | unserialize (std::istream &, ver_list &, const id_t &=NIL_ID) | 
Protected Attributes | |
| pLearnModel | lm | 
| the learning model   | |
| bool | full_ext | 
| use the full extension or the partial one?   | |
| ECOC_TABLE | out_tab | 
| K (nrank) by T (n_hyp) output ECC matrix.   | |
| EXT_TABLE | ext_tab | 
| T (n_hyp) by E (n_ext) extension matrix.   | |
| UINT | n_ext | 
| pDataSet | ext_d | 
| the extended dataset   | |
| pDataWgt | ext_w | 
| the weight for the extended set   | |
| UINT | d_nrank | 
| number of ranking levels of the training set   | |
| bool | reset_data | 
| whether to reset the training set for lm   | |
| std::vector< REAL > | local_d | 
Definition at line 23 of file ordinal_ble.h.
      
  | 
  
| 
 
 Definition at line 32 of file ordinal_ble.h. References LearnModel::set_dimensions(). Referenced by Ordinal_BLE::clone(), and Ordinal_BLE::create().  | 
  
      
  | 
  
| 
 
 Definition at line 78 of file ordinal_ble.cpp. References Ordinal_BLE::lm.  | 
  
      
  | 
  
| 
 
 Definition at line 36 of file ordinal_ble.h.  | 
  
      
  | 
  ||||||||||||
| 
 Error measure for classification problems. 
 
 
 Reimplemented from LearnModel. Definition at line 152 of file ordinal_ble.cpp. References LearnModel::n_output(), OUT2RANK, and VALIDRANK.  | 
  
      
  | 
  
| 
 Create a new object by replicating itself. 
 
 return new Derived(*this); 
 Implements LearnModel. Definition at line 40 of file ordinal_ble.h. References Ordinal_BLE::Ordinal_BLE().  | 
  
      
  | 
  
| 
 Create a new object using the default constructor. The code for a derived class Derived is always return new Derived(); Implements LearnModel. Definition at line 39 of file ordinal_ble.h. References Ordinal_BLE::Ordinal_BLE().  | 
  
      
  | 
  
| 
 
 Definition at line 304 of file ordinal_ble.cpp. References Ordinal_BLE::extend_input(), and Ordinal_BLE::lm. Referenced by Ordinal_BLE::operator()().  | 
  
      
  | 
  ||||||||||||
| 
 
 Definition at line 295 of file ordinal_ble.cpp.  | 
  
      
  | 
  
| 
 
 Definition at line 50 of file ordinal_ble.h. References Ordinal_BLE::out_tab.  | 
  
      
  | 
  
| 
 
 Definition at line 203 of file ordinal_ble.cpp. References dataset::append(), Ordinal_BLE::extend_example(), LearnModel::n_samples, nrank, OUT2RANK, and LearnModel::ptd. Referenced by Ordinal_BLE::train().  | 
  
      
  | 
  ||||||||||||||||||||||||
| 
 
 Definition at line 287 of file ordinal_ble.cpp. References Ordinal_BLE::extend_input(), nrank, and Ordinal_BLE::out_tab. Referenced by Ordinal_BLE::extend_data().  | 
  
      
  | 
  ||||||||||||||||
| 
 
 
 Definition at line 278 of file ordinal_ble.cpp. References Ordinal_BLE::ext_tab. Referenced by Ordinal_BLE::distances(), and Ordinal_BLE::extend_example().  | 
  
      
  | 
  
| 
 
 Definition at line 51 of file ordinal_ble.h. References Ordinal_BLE::ext_tab.  | 
  
      
  | 
  
| 
 
 Definition at line 48 of file ordinal_ble.h. References Ordinal_BLE::full_ext.  | 
  
      
  | 
  
| 
 
 
 Implements Object.  | 
  
      
  | 
  
| 
 the underlying model 
 Definition at line 45 of file ordinal_ble.h. References Ordinal_BLE::lm.  | 
  
      
  | 
  
| 
 the number of ranks from the training set 
 Definition at line 57 of file ordinal_ble.h. References Ordinal_BLE::d_nrank.  | 
  
      
  | 
  
| 
 
 Implements LearnModel. Definition at line 270 of file ordinal_ble.cpp. References Ordinal_BLE::distances(), GET_BEST_RANK, RANK2OUT, and LearnModel::valid_dimensions().  | 
  
      
  | 
  
| 
 
 Definition at line 87 of file ordinal_ble.cpp. References Ordinal_BLE::d_nrank, Ordinal_BLE::ext_d, Ordinal_BLE::ext_tab, Ordinal_BLE::ext_w, Ordinal_BLE::full_ext, Ordinal_BLE::lm, Ordinal_BLE::n_ext, Ordinal_BLE::out_tab, and Ordinal_BLE::reset_data.  | 
  
      
  | 
  ||||||||||||
| 
 Error measure for regression problems. 
 
 
 Reimplemented from LearnModel. Definition at line 157 of file ordinal_ble.cpp. References LearnModel::n_output(), and VALIDRANK.  | 
  
      
  | 
  
| 
 Cleaning up the learning model but keeping most settings. 
 Reimplemented from LearnModel. Definition at line 257 of file ordinal_ble.cpp. References Ordinal_BLE::lm, and LearnModel::reset().  | 
  
      
  | 
  ||||||||||||
| 
 
 Reimplemented from LearnModel. Definition at line 18 of file ordinal_ble.cpp. References Ordinal_BLE::full_ext, Ordinal_BLE::lm, Ordinal_BLE::n_ext, n_hyp, nrank, Ordinal_BLE::out_tab, and SERIALIZE_PARENT.  | 
  
      
  | 
  
| 
 
 Definition at line 105 of file ordinal_ble.cpp. References Ordinal_BLE::ext_d, Ordinal_BLE::ext_w, and Ordinal_BLE::full_ext.  | 
  
      
  | 
  
| 
 set the underlying learning model 
 Definition at line 100 of file ordinal_ble.cpp. References LearnModel::clone(), Ordinal_BLE::lm, and Ordinal_BLE::reset_data.  | 
  
      
  | 
  ||||||||||||
| 
 
 Definition at line 126 of file ordinal_ble.cpp. References lemga::MULTI_THRESHOLD.  | 
  
      
  | 
  ||||||||||||
| 
 
 Definition at line 113 of file ordinal_ble.cpp. References Ordinal_BLE::ext_tab, Ordinal_BLE::local_d, nrank, and Ordinal_BLE::out_tab. Referenced by Ordinal_BLE::train().  | 
  
      
  | 
  ||||||||||||
| 
 Set the data set and sample weight to be used in training. 
If the learning model/algorithm can only do training using uniform sample weight, i.e., support_weighted_data() returns  
In order to make the life easier, when support_weighted_data() returns  
 
 
 Reimplemented from LearnModel. Definition at line 162 of file ordinal_ble.cpp. References Ordinal_BLE::d_nrank, Ordinal_BLE::ext_d, Ordinal_BLE::ext_w, LearnModel::n_samples, OUT2RANK, LearnModel::ptd, LearnModel::set_train_data(), and VALIDRANK.  | 
  
      
  | 
  
| 
 Whether the learning model/algorithm supports unequally weighted data. 
 
 
 Reimplemented from LearnModel. Definition at line 59 of file ordinal_ble.h.  | 
  
      
  | 
  
| 
 Train with preset data set and sample weight. 
 Implements LearnModel. Definition at line 232 of file ordinal_ble.cpp. References lemga::BLE_DEFAULT, Ordinal_BLE::d_nrank, Ordinal_BLE::ext_d, Ordinal_BLE::ext_w, Ordinal_BLE::extend_data(), Ordinal_BLE::lm, nrank, LearnModel::ptd, LearnModel::ptw, Ordinal_BLE::reset_data, LearnModel::set_dimensions(), and Ordinal_BLE::set_tables().  | 
  
      
  | 
  ||||||||||||||||
| 
 
 Reimplemented from LearnModel. Definition at line 45 of file ordinal_ble.cpp. References Ordinal_BLE::d_nrank, Ordinal_BLE::ext_d, Ordinal_BLE::ext_tab, Ordinal_BLE::ext_w, Ordinal_BLE::full_ext, Ordinal_BLE::lm, Ordinal_BLE::n_ext, n_hyp, Object::NIL_ID, nrank, Ordinal_BLE::out_tab, LearnModel::ptd, LearnModel::ptw, Ordinal_BLE::reset_data, and UNSERIALIZE_PARENT.  | 
  
      
  | 
  
| 
 number of ranking levels of the training set 
 Definition at line 70 of file ordinal_ble.h. Referenced by Ordinal_BLE::n_rank(), Ordinal_BLE::operator=(), Ordinal_BLE::set_train_data(), Ordinal_BLE::train(), and Ordinal_BLE::unserialize().  | 
  
      
  | 
  
| 
 the extended dataset 
 Definition at line 68 of file ordinal_ble.h. Referenced by Ordinal_BLE::operator=(), Ordinal_BLE::set_full_extension(), Ordinal_BLE::set_train_data(), Ordinal_BLE::train(), and Ordinal_BLE::unserialize().  | 
  
      
  | 
  
| 
 T (n_hyp) by E (n_ext) extension matrix. 
 Definition at line 28 of file ordinal_ble.h. Referenced by Ordinal_BLE::extend_input(), Ordinal_BLE::extension_table(), Ordinal_BLE::operator=(), Ordinal_BLE::set_tables(), and Ordinal_BLE::unserialize().  | 
  
      
  | 
  
| 
 the weight for the extended set 
 Definition at line 69 of file ordinal_ble.h. Referenced by Ordinal_BLE::operator=(), Ordinal_BLE::set_full_extension(), Ordinal_BLE::set_train_data(), Ordinal_BLE::train(), and Ordinal_BLE::unserialize().  | 
  
      
  | 
  
| 
 use the full extension or the partial one? 
 Definition at line 26 of file ordinal_ble.h. Referenced by Ordinal_BLE::full_extension(), Ordinal_BLE::operator=(), Ordinal_BLE::serialize(), Ordinal_BLE::set_full_extension(), and Ordinal_BLE::unserialize().  | 
  
      
  | 
  
| 
 the learning model 
 Definition at line 25 of file ordinal_ble.h. Referenced by Ordinal_BLE::distances(), Ordinal_BLE::model(), Ordinal_BLE::operator=(), Ordinal_BLE::Ordinal_BLE(), Ordinal_BLE::reset(), Ordinal_BLE::serialize(), Ordinal_BLE::set_model(), Ordinal_BLE::train(), and Ordinal_BLE::unserialize().  | 
  
      
  | 
  
| 
 
 Definition at line 78 of file ordinal_ble.h. Referenced by Ordinal_BLE::set_tables().  | 
  
      
  | 
  
| 
 
 Definition at line 29 of file ordinal_ble.h. Referenced by Ordinal_BLE::operator=(), Ordinal_BLE::serialize(), and Ordinal_BLE::unserialize().  | 
  
      
  | 
  
| 
 K (nrank) by T (n_hyp) output ECC matrix. 
 Definition at line 27 of file ordinal_ble.h. Referenced by Ordinal_BLE::ECOC_table(), Ordinal_BLE::extend_example(), Ordinal_BLE::operator=(), Ordinal_BLE::serialize(), Ordinal_BLE::set_tables(), and Ordinal_BLE::unserialize().  | 
  
      
  | 
  
| 
 whether to reset the training set for lm 
 Definition at line 71 of file ordinal_ble.h. Referenced by Ordinal_BLE::operator=(), Ordinal_BLE::set_model(), Ordinal_BLE::train(), and Ordinal_BLE::unserialize().  | 
  
 1.4.6