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CS/CNS/EE 156 a Caltech

Learning Systems Fall 2000

|||||||||||||||||||||||||||||||||||||||||||

Homework # 3

DUE TUESDAY, NOVEMBER 7, 2000, AT 2:30 PM

Collaboration in the sense of discussions is allowed, but you should write the �nal solutions alone

and understand them fully. Do not read class notes or homework solutions from previous years at

any time. Other books and notes can be consulted, but not copied from. You should justify your

answers, at least brie
y. De�nitions and notation follow the lectures.

The handouts and data for the homeworks can be found at:

http://work.caltech.edu/cs156/00/homeworks.htm

1. Bias and Variance

Consider the case where the target function f : [��; �] ! [�1; 1] is given by f(x) = sin(x) and

the input probability distribution is uniform on [��; �]. Assume that the training set has only

two examples (picked independently), and that the learning algorithm picks the hypothesis that

minimizes the mean squared error on the examples. For each of the following learning models, �nd

(a) The best hypothesis that approximates f in the mean-squared-error sense (f is assumed to be

known for this part), (b) The expected value (with respect to the training set) of the hypothesis

that the learning algorithm produces, and (c) the expected out-of-sample error and its bias and

variance components.

(i) The learning model consists of all functions of the form g(x) = ax + b (if you need to deal with

the in�nitesimal-probability case of two identical examples, choose the hypothesis tangential to f).

(ii) The learning model consists of all functions of the form g(x) = b.

To help you solve the problem a table of integrals is provided at the following web address:

http://www.work.caltech.edu/cs156/00/hw/hw3/integrals/
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2. Gradient and Hessian

Consider the nonlinear function (from homework #1) E(u; v) = (uev � 2ve�u)2. We start at the

point u = 1 and v = 1, and take a step of length 0.1 in the u; v space with a view to minimizing E.

(i) Compute the Hessian (2� 2 matrix) at the starting point. Recall the values of the gradient (@E
@u

and @E

@v
) from homework # 1.

(ii) If we descend along the gradient, compute the value of

�E = E(u+�u; v +�v)�E(u; v)

using the second-order approximation (keeping terms up to 2nd order in Taylor series), and compare

it to the �rst-order approximation and to the exact value of �E from homework # 1.

(iii) Numerically, �nd �u and �v (total length 0.1) that minimize �E, and compute the resulting

�E.

(iv) Repeat (iii), using the second-order approximation.

(v) Repeat (iv), neglecting the o�-diagonal elements of the Hessian.

3. Momentum and Adaptive Learning Rate

For this problem you will write a program to optimize the following error function.

E(w) = (
X

i

eaiwi +
X

i

e�biwi)� (
X

i

eciwi +
X

i

e�diwi)

Use the parameter values speci�ed in

http://www.work.caltech.edu/cs156/00/hw3/parameters.txt

For each part, plot optimization curves E(wt) vs. t for 250 time steps.

(i) Write functions to evaluate E and its gradient, and use them to minimize E by gradient descent.

Start with w = 0 and learning rate � = 10�5.

(ii) Modify your code to use an adaptive learning rate. At each step:

if �E < 0, set �t+1 = ��t

if �E � 0, undo the weight update and set �t+1 = ��t

Try using � = 1:1; 1:5; 2 and � = 0:2; 0:5; 0:8, and pick the best combination. Compare with the

results of part (i).

(iii) Modify your code to use momentum. �wt = ��rE + ��wt�1 Try � = 0:2; 0:5; 0:8; 0:99, and

pick the best value. Compare with parts (i) and (ii).
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4. Line Search and Conjugate Gradient

Implement a line search (e.g., the binary search described in the handout, with � = 10�5). Consider

the error function E(w) from problem 3.

(i) Using your line search, optimize E by minimizing along the line in the direction of the gradient

(steepest descent). Compare the results with those of problem 3.

(ii) Using your line search, implement the conjugate gradient optimization. Reset dt = �gt every

T steps. Try T = 2; 10; 100, and pick the best value. Compare the optimization to the results of

problem 3.
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