CNS 187 - Neural Computation
Problem Sheet 5

Handed out: 27 Oct 2000
Due: 3  Nov 2000

5.1 Single Layer Networks, HKP chapter 5
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Figure 1: A one layer network.

The network shown in figure 1 is a standard one-layer feed-forward network. The small circles
on the bottom are the input units. The large circles on the top are the output units. The
lines connecting the units are the weights. The output of unit ¢ to input pattern y is given by
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where w;, is the weight to unit ¢ to from unit k, and w;g = 6; is the bias of unit 7 and zg
is fixed at —1. The function o(-) is called the activation or gain function; we will use the
sigmoid? .
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This network represents a function that maps the n dimensional input space to the m di-
mensional output space. Any particular setting of the weights will correspond to a particular
input-output function. In general, we want to set the weights to approximate some unknown
target function. We have only a finite set of examples of this function, called the training set.

Suppose we want the desired output of the network to be d! on the training inputs z£', and
the weights are to be updated according to

new __ ,,old .
wif” = wii® + Awy. (3)

1Sigmoid is a name often used to refer to a general class of functions with the properties of being monotonic,
differentiable, and bounded.



1. Verify that a learning rule that performs gradient descent on the error measure
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(Hint: express o’(s) as a function of o(s).)

You will now write a MATLAB program to implement this learning rule. Look at the files
we provided you this week. The first data set you will be using is setl.dat, which is an
ASCII file where each line contains one sample (two inputs and two outputs). The two
outputs represent class membership; class 1 points have output 1 = 1 and output 2 = 0,
while class 2 points have output 2 = 1 and output 1 = 0. MATLAB will read the file into a
100 x 4 matrix setl with the command load setl.dat. You can view the data points using
boundary(setl(set1(:,3),1:2)’,set1(setl1(:,4),1:2)’,[]1), which will draw a scatter
plot of the class 1 points and the class 2 points, with no decision boundary.

Let X = set1(:,1:2)? be a 2 x 100 matrix of input data, where each column represents a
separate sample y. We can make augmented input, with —1 in the first position of each
column, by

Xp = [ -ones(1,size(X,2)); X 1;

and let D = set1(:,3:4)°’ similarly be a 2 x 100 matrix of the desired output. Observe that
the 2 x 100 matrix of network outputs can be written as

Y = 1./(1+exp(-W*Xp));
where W is a 2 X 3 matrix.

2. Find a MATLAB expression which computes dEdW, the 2 X 3 matrix representing the
gradient (,,‘?U—Ek. Note that the sum over all samples can be expressed as a matrix multiply
— so this is a one-liner.?

3. Complete the function bpropl.m to do gradient descent on a 1-layer feed-forward neural
network. The function should return a vector of the errors E(i), where i =1... iters.

2If you calculate gradients using a for loop, your backprop algorithm will be incredibly slow in MATLAB. It
would be fine if you were using C or a similar language.
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Figure 2: Decision boundaries for a random setting of the weights.

On a successful run, the errors should decrease monotonically. However, you will find
that success depends upon the ’learning rate’ eta, the magnitude of the initial weights,
and the number of iterations of weight updates.

Run your program on setl. You should be able to see some results for eta = .1, initial
weights distributed uniformly between [-1,1], and 1000 iterations. The decision bound-
aries indicate the regions of input space for which the output of the network indicates a
particular class. A way of schematically representing the output values for every point
in the input space is to overlay a graph of the (2D) input points and, for each output
unit, the lines which satisfy the equation o(s) = 0.2, o(s) = 0.5, and o(s) = 0.8. From
this, the decision boundaries are easy to see because all you have to do is identify the
regions where the output of one unit is > 0.8 and the output of the other unit is < 0.2
and vice versa (remember, the output of the sigmoid is always between zero and one).
An example graph is shown in figure 2 which is how the network might divide up the
input space after the weights have been initialized. (The function boundary is provided
to draw these plots.) Be sure to indicate on your decision boundary graph what region
of the input space the network would “label” class 1 and what region would be labeled
class 2. Use the classification criteria described above, i.e. classification is correct
if each unit is within 0.2 of it’s desired value. Hand in a plot of the data and com-
puted decision boundaries. What percentage of the patterns does the network correctly
classify? Describe how the network is performing the classification, i.e., describe the
function computed by the learning procedure by graphing the decision boundaries of the
network.

4. Now run your program on set2. What percentage of the patterns does the network



classify correctly? Graph the decision boundaries. Why can’t the network learn to
classify this set correctly? Would increasing eta or iters or initializing the weights
differently help?

5.2 Multilayer networks, HKP chapter 6, pp 115-123

In the previous problem, you saw that a one layer network represents a limited class of func-
tions. In this problem, you will implement an extension of the learning rule, called back-
propagation, which minimizes F for multi-layer networks. It can be shown that a two-layer
network is sufficient to implement any Boolean function and to approximate any continuous
function given a sufficient number of hidden units. Although this may seem like we now have
everything we need, we still can’t get computers to recognize speech or to classify faces. One
possible reason, which we do not address here, is the implicit assumption that a continuous
function which solves the problem exists. Another reason, a problem even if the solution is
continuous, is that the space of functions to search through quickly becomes so enormous
that it’s impossible to find the tiny subspace of functions that classify the training pattern set
correctly and do well on patterns that the network hasn’t been trained on. The performance
of the network on novel patterns is called generalization and is something we will consider
later.

Here we consider a two-layer network with input units z; (: = 1...n), hidden units z; (j =
1...h), and output units y, (k= 1...m), where

n
zj = o(rj), rj=> Wi,
=0
h
Yr = o(sk), sk =Y Vijzj
7=0
and g = zg = —1. We use the same sigmoid gain function, as before, for both the hidden

units and the output units.

1. Show your derivations for the 4 gradients of £ shown below. Then give MATLAB ex-
pressions for all 6 expressions shown below.

e Z, the matrix of activity of the hidden units z;‘ for all data samples,

e Y, the matrix of activity of the output units y,’;‘ for all data samples,

e eY, the matrix of deltas g—i for all samples,

e eZ, the matrix of deltas ngj- for all samples,

e dEdV, the matrix of derivatives %,

e dEdW, the matrix of derivatives %.

Again, each of these expressions can be written as a single line, making use of matrix
operations; it helps to write later matrices in terms of previous ones. The matrices Z



and eZ should be h x N, Y and eY should be m x N, dEQV should be m x (h + 1), and
dEdW should be h x (n + 1).

. Use the expressions above to complete the program bprop2.m to implement the back-
propagation learning algorithm for a 2-layer network, as outlined on page 120 of HKP.
The network should have two input units, two hidden units, and two output units; the
hidden units and output units should all have biases (don’t forget!).

The gradient descent can be made much more efficient with a little extra effort by adding
momentum as described on page 123 of HKP. If you don’t implement momentum, you
could spend a long time waiting for the gradient descent procedure to find a minimum;
however, you might want to try it without momentum first. If you’re curious (optional!)
look at other methods in HKP or think of your own.

Run the program on the same pattern sets used in the last problem, setl and set?2.
What percentage of the patterns in each set did the network classify correctly? Why is
the two-layer network able to do much better on the second set than the one-layer net?

. One way to get an idea for how the two-layer network is performing the classification is
to use boundary to graph the orientation of the sigmoid units in the middle layer over
the input set (these indicated the decision boundaries in the one-layer problem). Make
this graph for pattern set 2. How is the network performing the classification? Use
boundary to look at the output units’ decision boundaries in terms of the hidden unit
activities for class 1 and class 2 input.



