CNS 187 - Neural Computation
Problem Sheet 4

Handed out: 24 Oct 00
Due: 30 Oct 00, 5pm

4.1 Associative Memory HKP 11-25, 53-56.

For this problem you will experiment with a 100 neuron associative memory network. You
should simulate this network using the simhop.m function. The main line for Euler integration
has been left blank; you must fill in this line. The weight matrix will be computed to explicitly
store some patterns into the network so that these patterns become the stable states (at least
we hope).

The patterns you will try to store into the network are (you guessed it) 10 by 10 images of
digits. Each of the ten patterns is a vector of 100 values either +1 or -1. When arranged in a
10 by 10 grid these vectors make binary pictures of the digits 0 through 9. You can get these
ten patterns by loading the MATLAB data file pat .mat. This loads a matrix pat into memory
which has 100 rows and 10 columns; each column is a different pattern. We have provided a
function to display these patterns; use disppat (pat(:,k)).

1. Write a routine which computes the weight matrix W according to the outer product
formula. Namely, if P¥ are the memories (patterns) to be stored, first let

1 M

W= o S (P (1)

k=1

then set all diagonal elements to zero (W;; = 0 for all). Here M is the number of
patterns to be stored, in our case M < 10. Give a brief answer to the question: “Why
are we setting all the diagonal elements to zero?” (note: it is not required for stability).
Later you will need to experiment with storing different numbers of patterns, so be sure
the variable M is easy to change in your routine.

For these simulations, you will set initial conditions for the V variable and read output as
the V and S variables. Start the differential equations in their initial state and simulate the
network until convergence. What gain should you use? What eta should you use? For all
practical purposes, you can guarantee convergence after a reasonable number of iterations (
100 is probably overkill). We have provided a function plothopd.m which shows you a movie
of the network converging so you can get an idea of what is happening. (In general, it is
possible to follow the convergence at each time step by using the Lyapunov function, but it
takes a little manipulation to get the second term of this function into a transparent form?!.
If you do this you should see the Lyapunov function always decreasing.)

!Notice that fOS tanh™*(z) dz = Stanh™'(S)+1/2In(1—S?) and recall that tanh ™! () = 1/2 In[(14z)/(1—

2. Now we would like you to simulate the network with a weight matrix W™ constructed
from the first M of the 10 total memory patterns provided; and you will observe the
behavior as a function of M. You will do this by examining the attractor-basin structure
of the phase space. Let f (§) be the stable fixed point that the network converges to
when started in state S. We say that f(S) is a correct memory if +f(S) = P* for exactly
one k. We say that f(g) is a confused memory if j:f([;") = f(ﬁk) # PF for exactly one k.
Otherwise, we say that f(S") is a spurious memory. We are interested in what fraction
of the volume of § space leads to correct, confused, and spurious memories. You will
want to write a MATLAB routine to automatically classify fixed point memories.

By simulating random initial states chosen with S; € (—1,1), estimate the fraction of
the volume of § space that leads to correct, confused, and spurious memories. (Note: be
sure to transform your random § into V space for the simulation.) Plot these fractions as
a function of M, including error bars indicating the standard deviation of your sample.
Also plot the number of desired patterns that are correct memories.

3. Briefly describe your findings. For what value of M does the network start to fail? How
does this value compare with the theoretical capacity of a 100 neuron network (see pages
19 and 39 in HKP)? What do the spurious states look like?

The reason the associative memory does not work very well is that the patterns we are trying
to store are highly correlated. (Think about why this might be; see HKP pp. 17-20 for more
details.) What does this mean? It means that they often have the same pixels turned on or
off. For example, the leftmost and rightmost columns of the image are always +1 for every
pattern. You can see this more clearly by computing the matrix of pattern inner products:
this is a 10 by 10 symmetric matrix whose ij*" element is the dot product between pattern i
and pattern j. If the patterns were perfectly decorrelated, this would be 100 on the diagonal
and zero everywhere else. But in fact, there is significant correlation.

4. Compute this matrix Z of inner products. Hand in a picture of it produced with
colormap(’gray’); imagesc(Z,[0 100]) which shows the correlations between pat-
terns. (Hint: you can compute Z in one line with a simple matrix operation on pat.
Don’t use for loops.) Recall that a pattern P* is stable iff

PF = sgn Zwiij = sgn (Pz-k(l - Czk)) .
J
Explain how the matrix Z is related to the cross-talk terms Cik.

In class, we estimated the capacity of an associative network by considering randomly-chosen
patterns, and then estimating the probability that a chosen pattern is stable. Key to our
argument was the fact that random patterns are only very weakly correlated. We would
like to transform our desired memory patterns — the digits — into Weakly correlated patterns,
usmg a 31mp1e linear one-layer feedforward network. That is, pattern P ig transformed into
5(0) = TP™, i.e., S;(0) = > TUPm The recurrent network dynamics then bring S to a fixed
point attractor. Another linear one-layer network transforms the fixed point S (00) back to

the original coordinate system: Pout — 7§ (00). This can roughly be envisioned as a rotation
of the coordinate system in which the patterns are represented.

5. We will construct a linear transformation that does the job. To find a “randomizing”
matrix 7T, choose a matrix of random patterns R and require that R = TP, where P
is the N x M matrix of vectors PF. (Hint: it may help to “pad” P with extra random
patterns, so that P! can be computed.) What is 77 In MATLAB let puncorr = T*pat;.
To confirm that you did this right, compute the matrix Z of inner products for this new
set of patterns — is the magnitude of the inner products what you would expect?

6. Rerun your associative memory by storing and retrieving patterns as follows: Compute a
new W;; which stores the “randomized” patterns puncorr. Now modify simhop so that
when you want to initialize the network to a particular initial state you first “rotate” this
initial state and then present it to the network. Run the network dynamics (using the
new VVU) until they reach a stable point and then “unrotate” the resulting stable state
using T'. Again, estimate the fraction of the volume of P space that leads to correct,
confused, and spurious memories, and plot these fractions as a function of M with error
bars. Also plot the number of desired patterns that are correct memories.

7. For the largest value of M for which the network correctly stored all M memories, try
the following: Start the network in a corrupted version of one of the stored patterns —
see how well the memory works as an associative memory. Experiment with different
levels of signal-to-noise by adding a constant times the original pattern (i.e., a fainter
or stronger signal) to a zero mean unit variance Gaussian random vector. Provide these
input patterns to the network in 1% space, since we aren’t guaranteeing that our patterns
are bounded between -1 and +1. For one particular digit, determine how “faint” the
initial pattern can be before it fails to be correctly retrieved. Express “faintness” as
the ratio of noise variance to signal variance. (Be careful when you calculate the signal
variance not to instead compute the signal standard deviation.)

8. We didn’t really “uncorrelate” the memory patterns as much as we could. Show (on
paper) how to find 7' and T that perfectly decorrelate the patterns memorized by the
associative network. You may assume N is even and that a set of M orthogonal £1
vectors are known. Calculate the crosstalk terms C’ZlC when the memorized patterns
are orthogonal (i.e., PPT = NI where Py, = sz), and show that up to N — 1 stored
memories can be stable. What is W when N memories are stored?

4.2 Winner-Take-All Networks and Nearest-Neighbor Memories

Using extra input to each units, we can create an M-unit network with exactly M stable
states: each stable state has one unit “on” (S; = +1) and all the others “off”. This can be
accomplished by providing inhibitory connections between all units while exciting all units
with a tonic input. Specifically, W;; = —1 for i # j, W;; = 0 for ¢ = j, and I; = « for some «
to be determined, where the dynamics of the system are

Vi=-Vi+ > Wi;Sj+1;
J

and S; = tanh(B8Vj).

1. Note that by symmetry, the Lyapunov function £ should be a function only of the

number of units, m, that are “on”. Write down the high-gain Lyapunov function in
terms of m. Determine what values of a guarantee that the only stable states have

exactly one unit “on”. For convenience, let S* be the pattern with only the A" unit

uon” .

. For such a value of «, determine the attractor basin boundaries in the continuous dy-

namics. That is, characterize the set of initial states V such that the fixed point is, say,
S!. Hence the name, “Winner-Take-All” (WTA).

Let us use the WTA network to create an associative memory. Again, consider a simple linear
one-layer network mapping the N-bit input patterns P to the M WTA units, and another
linear one-layer network mapping the WTA units to the N-bit outputs Pout_TIn this case, we
will modify our dynamics so that

M N
VZ’ =-Vi+ ZWiij + I; + ZTUP;"
P P

and the output units behave according to

and

M
Ui =-U; + ZTiij

J=1

P;’"t = tanh(B8U;).

Again, we want to memorize patterns P'... PM,

Write an analytic form for the equilibrium V; in the low-gain limit.

Find T such that for every k, at low gain Vj is the most active unit if Pk is presented
as input. (Note that the patterns to be memorized all have norm ||P*|| = v/N.)

. Describe what happens to S; when the gain is suddenly turned from very low to very

high.

. Find T such that at high gain, if the WTA is in state 5'7“, then the output is Pk,

Describe the behavior of this network as an associative memory. Hence the name, “near-
est neighbor memory”. Another name: “grandmother cells”. Compare the behavior of
this memory to the recurrent associative network you used in the first problem, assuming
a set of random patterns. How large can M be, compared to N7 How many weights
are used per bit memorized? For cases where both memories can store all the memories,
what behavior would you expect if a small fraction of the weights in each network were
“damaged” by setting them to zero?

4.3 Translation-Invariance by Fourier Transforms

Suppose we would like to recognize a pattern even if it occurrs translated in a 2-dimensional
image. One idea would be to pre-process the input patterns to a translation-invariant repre-
sentation. The two-dimensional Discrete Fourier Transform does the trick.

Suppose the N x N image is a(z,y). Then

=
2

1

=N ala,y)e F il F vy

0

Fa(fmafy)

<
Il
o
8
Il

where 0 < f;, fy < N — 1. Note that F, is typically complex-valued.

1. Show that if b(z,y) = a(z + ds,y + dy) where addition is performed mod N, then
Fa(far fy)ll = | Fo(fzs fy)]-

2. What problems would you expect to encounter if you were to try this trick with the
digits?

