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1.1 McCulloch & Pitts neurons

1. There are many ways to solve this problem, but if we restrict ourselves to using 6 neurons, we will
probably get something like the network shown in Figure 1(a). Here the two input neurons are not
explicitly shown; we simply use the input lines A and B.
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Figure 1: Networks for addition. Threshold values are shown inside the circles.

Just like when we do addition by hand, at each time step we need to sum up the current bit from
each of the two numbers with the carry bit from the previous step, yielding a sum of 0, 1, 2, or 3.
This sum is detected (in unary) by the three neurons on the left, which have thresholds of 1, 2, and
3. They receive inputs from the A and B input lines, as well as from the upper left unit, which as
we will see computed the carry at the previous step. If the sum A; + B; 4 carry; is 0, then none of
the left three neurons will fire. If the sum is 1, then just the one with threshold 1 will fire. If the
sum is 2, then the one with threshold 2 will also fire, and if the sum is 3, then all three will fire.

Now, computing the carry bit is easy: We need to carry a 1 iff the sum is 2 or 3, so neuron ¢ correctly
computes the carry bit for the next step. Computing the output bit isn’t much harder; it should be
a 1 iff the sum is 1 or 3. Neuron f fires exactly when the sum is 1, and e fires when the sum is 3,
so the output neuron just needs to take the OR of these values, but we need a delay g so that the
values are presented to the output neuron at the same time.

Table 1 shows the behavior of the network for the input 11101+ 01110. The delay in generating the
output is 3 time steps. That is, the first bit of the sum is generated on the output line 3 time steps
after the first bits of the summands are presented on the input lines.

2. Using relative inhibition, we can merge neurons f and g into a single output neuron with threshold
1, since then the output neuron will fire if the sum is 1 or 3, but not if the sum is 2, which is just
what we need. This makes for a network of four neurons, and a delay of just 2 time steps.

There are other 4-neuron circuits which also work, such as the one shown in Figure 1(b), whose
activity is shown in Table 2.



t| A4 B; ¢ d e C;
111 o o0 - - - - -
210 1P 010 - - -
311 1 01 0 1 0 -
411 i 1 1 0 1 0 1
51 1 0 1 1 1 0 0 1
6| 0 0 1.1 0 0 1 O
710 0O 01 0 0 0 1
8§10 0O 0 0 0 1 0 O
910 0O 0 00 0 0 1

Table 1: Activity of network in Figure 1(a) adding 11101 + 01110

t| A B; ¢ d e Cj
111 o 0 - - -
210 1 0 0 1 -
311 1 0 1 0 1
411 1 1 0 0 1
511 0o 1 1 1 0
6| 0 0O 1 0 1 1
710 0 01 1 o0
8§10 0 0 0 0 1

Table 2: Activity of network in Figure 1(b) adding 11101 + 01110

3. Again, there are many possible solutions. We will base our solution on the standard way of doing
long multiplication:

CyC1Cy = A1 Ay x B1 By is carried out like this:

A A
X By B()
AlBO A()BO
+ A1By AoB

& Cy Co

In Figure 2, we use neurons d and f to store By and B;. The values in d and f are then used to
mask the digits of A, which stream directly through ¢ and then e, by output units @ and b, which
feed directly into the adder shown previously.

The activity for some sample multiplications is shown in Table 3. There is a delay of 4 time steps
before the output starts coming out. (We could compress the network by adding more inputs to
neuron a (from B; and T') and getting rid of neuron ¢, but the resulting network would be a little
more confusing.)

4. There are three parts to this question.

(a) Since the answer to part 4b is that a network capable of multiplying two n bit long numbers
must have at least 277! states, and we know that a k-neuron network can have at most 2¥
states, we see that k-neuron network will not be able to always correctly multiply k£ + 2 bit
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Figure 2: Network for multiplication. The weight from d to itself has weight 2. The outputs of a and b
are summed by the addition network.

T A B ¢ d e f a b T A B ¢c d e f a b
1 1100 - - - - 1 o100 - - - -
011 110 0 - - 010 010 0 - -
o - - 1 1 1 1 10 0 0 0110 0 00
o - - -1 1111 0 0 0 01 1 010
o - - - 101 0 1 0 0 0 01 00 0O

Table 3: Illustrations of multiplication using network in Figure 2. Left: 11 x 11 = 11 + 110; right:
10 x 01 = 10 + 000;



numbers. This means that any finite network can only correctly multiply all numbers up to
a given size. So no, there does not exist any finite network which is capable of multiplying
arbitrarily long numbers.

If a network can correctly multiply two n-bit numbers, then it can among other things correctly
multiply A and B when

A=100...0 BZOBn,Qanl...BlBO AXB:BR,Qanl...BlB()OO...O

n—1 n—1

for all 27~! possible values of such B.

Let’s consider the state of the network after n — 1 times steps. At this stage, all of the B;
have been read in, but none of them have been output yet. If the network has fewer than
2"~ 1 internal states, then there must be two different values of B which lead to the same
internal state after n — 1 time steps. Since the input that comes after the first n — 1 time
steps is always the same, these two different values of B must lead to exactly the same network
behavior after n —1 time steps. However, this means the network is operating incorrectly, since
correct multiplication requires that the network behavior be different, after n — 1 time steps,
for different values of B.

Since correct behavior is impossible if the network has fewer than 27! internal states, a network
that correctly does multiplication of n-bit numbers must have at least 2" ! internal states.

If we generalize our 2-bit multiplication network into an n-bit multiplication network for some
particular n, then for a given input pair (A, B) after some number ¢ of time steps the network
will be in some state. In fact, every reachable state of the network will exist for some triple
(A, B,t), so since there are 2" possibilities for A and 2" possibilities for B and 2n possibilities
for t, there can be no more than n22"*! states of the network. This is an upper bound. Can
we get a lower bound, or find the exact answer? For most network architectures, at time ¢t =n
all the digits of both A and B are stored separately in the network, so there are at least 22"
states. So this gives us a lower bound. Unfortunately, finding the exact number of states does
not appear to be tractable for most network architectures.

1.2 Gradient Descent

1. To complete the MATLAB program for performing gradient descent on the surface E = z2/2, we can
add the lines

M
A

-eye(1); % -dE/dx
eye(xdimensions) + eta * M; % x(n+1)

-1 *x x
(1 - eta) * x(n)

for n=1:timesteps-1
xhistory(:,n+1) = A * xhistory(:,n);

end

For n = 0.5, 1.9, and 2.1, we see three different types of behavior: steady approach to 0, oscillatory
approach to 0, and oscillatory divergence to oc.
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2. Empirically, the direct convergence occurs for 0 < 1 < 1, the oscillatory convergence occurs for
1 < n <2, and the oscillatory divergence occurs for > 2. This result can be derived analytically
by noting that our equation is z,+1 = (1 — 1)z, and hence z, = (1 — 1)"=zg; so if |1 — 5| < 1 then
xn, — 0 (oscillating depending upon the sign of (1 — 7)), else z, — +oc.

3. Now let’s move to the two dimensional surface. E(0,0) = 0. Is this the global minimum? By
examining the gradient

OF OFE 1 1
E=—,—)==(2 24y), —(24 2
v = (52.52) = (g 60+ 200, o210+ 260))

we see that the only place where both %—f =0 and %—f =01is (0,0).

The last four lines of the MATLAB program for doing gradient descent on F are now:

M = -[26/25 24/25; 24/25 26/25]; % -gradE = M * (x,y)
A = eye(xdimensions) + eta * M; h x(n+l) = (I - eta * M) * x(n)
for n=1:timesteps-1
xhistory(:,n+1) = A * xhistory(:,n);
end

4. Again, we see three different types of behavior: steady approach to the minimum (n = 0.4 is shown),
oscillatory approach to the minimum (7 = 0.95 is shown), and oscillatory divergence (n = 1.01 is
shown).

eta=04 eta=095 eta=1.01
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5. Empirically, the direct convergence occurs for 0 < n < 0.5, the oscillatory convergence occurs for
0.5 < n <1, and the oscillatory divergence occurs for > 1. To understand the convergence
conditions analytically, it is convenient to write the gradient as



z+y 1 (z—y
VE = — .
(x+y>+25<y—x>
This suggests a change of variables, where u = z + y and v = z — y. Now the difference equations
for the algorithm become:

OF Ty —
ITpn+1 = $n_na_$:$n_n($n+yn+n7%>

oF n Tn — Yn
= —_ _— —_ T —
Yn+1 Yn — 1N By Yn — 1 n T Yn o5
and thus
Upt1 = Tptl +Ynt1 = =Ty +Yp — 27 (xn + yn) = (1 - Zn)un
2(x, — 2
Up+1 = Tn+1l = Yn+1l = =Tpn —Yn —7 (%) = (1 - %n)vn

By induction, u, = (1 — 21)"ug and v, = (1 — %n)"vg. Amagzingly, this change of variables has
decoupled the dynamics along the two axes u and v, making their behavior obvious. Interestingly,
this gives us a richer understanding of convergence and divergence conditions: when 0 < n < 0.5,
the system converges to the origin; when 0.5 < n < 1, v still converges directly to 0, while u spirals
in; when 1 < 7 < 12.5, v still converges directly to 0, but u diverges (thus both z and y diverge —
and remain exactly equal); when 12.5 < 1 < 25, v spirals in and u diverges; and when 25 < 7, both
u and v diverge.

. Finally, we are prepared to deal with the multivariate version of gradient descent. Near the local
minimum Z,,;,, we can approximate E(Z) as:
" " S o L o . \Ta= =
E(Z) = E(Tmin) + DT — Tmin) + E(x — ZTmin)” H (T — Zpmin)

where D is the gradient of E evaluated at Ty, and H is the Hessian of E evaluated at ZTmin- Noting
that D = 0, since &, is a local minimum, and assuming without loss of generality that Z,;, = 0,

we write 1
E(Z) = E(0) + §fT HZ.
Now,
oF -

(If you’re not familiar with derivatives of matrix expressions, write it out explicitly as sum and then
take derivatives.) Our gradient descent algorithm will take steps

N N oF o =, - = - 2 0o
Tp+1 = Tn _"7% =TI, —nHz, = (I_"7H)"En = (I_nH)nxl'

As before, we have an explicit formula for Z,, and we want to know for what values of 7 the
expression stays bounded. We saw in the two dimensional example that this is easy to see after
the right change of variables. In this case, the right rotation is the eigenbasis of I — nH, because it



1.3

diagonalizes the matrix. (We will assume that the matrix has all N independent eigenvectors.) Let
A be the diagonal matrix of eigenvalues A;, and let R be the corresponding matrix whose columns
are eigenvectors, so that
I —nH = RAR .
Therefore,
(I'—nH)"=RA"R !,
where A™ is simply a diagonal matrix whose entries are A?. If all A\; < 1, then the algorithm

converges to the minimum Z,,;,; otherwise the Z, diverges.

How can we easily determine the eigenvalues of I- nﬁ for different values of 7 Note that they are
related to the eigenvalues ; of H as follows: if

(T nf) & = Nié:

then

and therefore v; = l_n’\i and A; = 1 — 7.

In summary, the algorithm converges to the local minimum if for all eigenvalues «; of the Hessian
at the minimum, |1 — 7| < 1.

Just for fun: Again assume that we are near enough to a local minimum Z,,;, that we can approxi-
mate E as 1
(where, since our surface is quadratic, H at our current location is the same as H at the minimum).
Taking derivatives, we get

D(%) = H(Z — Zmin)
where D is the gradient at Z. Assuming H is invertible, we can multiply both sides by H~! and
solve for Tpin:

—

Zmin = £ — H 'D.

Euler integration

. In the general linear case ¢ = M i/, Euler’s method uses the iteration

Jeear = G + AtMg, = (I'+ MAt),
and so by induction,
Ynat = (I + M AL) .

To solve a linear second order ODE with constant coefficients in closed form, one simply proposes
the exponential e* as a solution. Plugging this solution into the equation yields a quadratic in «
which in general will have two roots. (Actually, we may end up with a single double root in which
case our strategy is to propose a second solution of the form te® which will work.)

The general solution of the ODE is then simply given by:

y = Cre®t + Coe™ + yp



where C; and C5 are complex constants determined by the initial conditions, and yp is any particular
solution to the non-homogeneous part of the equation. (If the right hand side is zero as in all our
cases, this term drops out.)

. For the given examples, the state vector form and closed form solutions obtained by following the
methods explained above (making use of € = cos(t) + isin(t)) are given below:

()=(20)(0)

Solution given initial conditions: y = cos(t).

(b) Original equation: y"” 4+ 0.1y’ +y =0

()= 1) ()

Solution given initial conditions:

(a) Original equation: y" +y =0

0.05
y = e 0%cos(ty/1 — (0.05)2) + We*m&sm(t 1 —(0.05)2).

(c) Original equation: y” + 101y’ 4+ 100y =0

()= (o o ) ()

Solution given initial conditions: y = e~

. The MATLAB program is completed with the following lines (for equation (a); the other equations
are similar):

M=1[01; -10];
A = eye(ydimensions) + deltat * M;
for t=1:timesteps-1

yhistory(:,t+1) = A * yhistory(:,t);
end

Plots of (t) vs ¢/(t) from the simulation, with A¢ = 0.01, look similar, but not identical, to the
desired analytical solutions. In particular, (a) should give rise to a circle, but in the simulations an
outward spiral is always produced.

. Empirically, the greatest values of At which were found to preserve stability for the three equations
were:

(2) Atmaz = 0.0 (b) Atmag = 0.1 (¢) Atymag = 0.02
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Notice that for the first example, the maximum limit is zero. This means that the Euler method
is not powerful enough to accurately simulate this equation no matter how small the step size is.
In other words, if we let the simulation run for long enough, this example will always blow up. For
other examples, values of At,,;q, near the limit (but slightly over it) may appear to be stable for a
very long time before diverging, but they will eventually diverge.

. To obtain theoretical conditions for convergence, we can apply the same mathematics that we worked
our for our gradient descent algorithm. In particular, since

Gone = (I'+ MAY) .

where M is a constant matrix, the solution will converge so long as all the eigenvalues A; of M
satisfy |1 + At);| < 1. (Note, of course, that in some equations it is correct for the solution to not
converge, for example (a) (which shouldn’t diverge either).)

We apply this analysis in turn to the three equations:

(a) The eigenvalues of M are +i. Atz = 0 since |1 £ ¢A¢ > 1.

(b) The eigenvalues of M are —.05 £44/1 — (0.05)2, and Atye, = 0.1.
(c) The eigenvalues of M are —100 and —1, and At = 0.02



