CNS 187 - Neural Computation
Problem Sheet 1

Handed out: 28 Sept 00
Due: 6 Oct 00, 5pm

1.1 Computing with binary numbers using McCulloch & Pitts neurons (2
points)

One of the first milestones in the history of neural networks was Warren McCulloch and Walter
Pitts’ model of a neuron as a binary linear threshold unit. While the biological relevance of
this model is dubious, in their 1943 paper, McCulloch and Pitts showed that any finite logical
expression could be constructed using these units.

In this problem set, we will use McCulloch-Pitts units to build simple computational devices.
For a more detailed discussion of linear threshold units, see Marvin Minsky’s Computation:
Finite and Infinite Machines. If these topics interest you, you might consider taking CNS188a
and b.

s C—

Figure 1: The workings of a McCulloch-Pitts unit

Every McCulloch-Pitts unit outputs a binary value (1 or 0, corresponding to ’active’ or ’qui-
escent’) based on the activity of its inputs. As shown in Figure 1, a McCulloch-Pitts unit
performs two basic tasks in every time step. It first sums the activity of the input units, and
then compares that sum to the unit’s threshold value. When the total input is greater than or
equal to the unit’s threshold, the unit will be active in the next time step. Otherwise it will
become inactive. The threshold is an intrinsic parameter of each unit, although it can vary
among units.

Figure 2 shows a few simple McCulloch-Pitts units with their threshold specified in the center
of the unit. The first two examples show how to build two of the standard logical gates with
a M-P unit. An OR gate is simply a unit with a threshold of 1. Activity in either (or both) of
the two inputs will cause the unit to output a 1. The AND gate looks about the same, but it
has a threshold of 2, ensuring that only activity in both of the inputs will result in the unit’s
activation. Note that M-P units can have more than two inputs as well. To build an n-input
OR or and m-input AND, we would need to put » input connections on a unit and set it’s
threshold to 1 (for OR) or n (for AND).

EE— —»:
OR AND

Delay

Figure 2: Some example McCulloch-Pitts units

The third example shows a delay circuit, that stores the value of its input during time ¢,
and returns that same value, unchanged, at time ¢{4+1. Remember that the output of these
units is based on the inputs from the previous time step. Therefore it takes one time cycle
for information to propagate through any of these units. A simple delay could be useful if
different bits of the input to a M-P unit are expected at different times. The bits that arrive
earlier could be sent through a delay line, until the other inputs have arrived.

A———»
B—O :::
A AND (NOT B) NOT

Figure 3: Inhibitory inputs

The M-P units, as we have described them so far, are rather limited because there are some
very basic operations that a single unit cannot perform (e.g., NOT, XOR). Like real neurons,
however, M-P units are not only restricted to excitatory connections. M-P units can have
inhibitory connections (as shown in Figure 3). Some paradigms use absolute inhibition (a
unit will output 0 any time one or more of its inhibitory inputs are active), and some use
relative inhibition (an active inhibitory inputs sums as a -1; alternatively it can be thought of
as raising the threshold by 1).

Formally, we can fully specify a network of n units by giving a vector 8 of thresholds and a
matrix W of connections, where W;; is the number of excitatory connections from unit j to
unit 7, minus the inhibitory connections. For a connection with relative inhibition, W;; is a
negative integer; for a connection with absolute inhibition, we can use W;; = —oo, with the
convention that oo -0 = (0. Then the dynamics can be written:

gi(t + 1) =0 Z Wijgj(t) - 9z

=1

where g;(t) is the activity of unit ¢ at time ¢, and o(z) = {1 iff z > 0;0 otherwise }.

1. A neural network can easily implement addition of two arbitrarily long numbers, as-
suming that the numbers are presented to the network starting with the lowest order
digit first (from least to most-significant bit). Design a network that can perform such
an addition using McCulloch & Pitts neurons with absolute inhibition (that is, a single
active inhibitory input prevents the neuron from firing). Your network should have two
input neurons, one for each input bit stream, representing the two number to be added.
It should output a single bit stream, corresponding to the sum of the two inputs. The
output can be delayed several time steps with respect to the input, but every subsequent
time step should produce a new bit of output. Try to keep the network size small-you
should be able to do this using 6 units.

Hand in a diagram of your circuit, making sure you specify the threshold value of each
unit. Show how your circuit will handle the following inputs: A= 11101 B =01110
(at t=1, input A is 1 and input B is 0, at t=2, A is 0 and B is 1,...) producing (if
the delay were 3 steps) the output C = A + B (delayed) = 0101011000

2. Can you design another network with fewer units using relative inhibition (a unit fires
if net excitation minus net inhibition equals or exceeds the threshold ¢)? Hand in a
diagram of your new network, and work through the same example as before.

3. Now we will look at the multiplication of bit streams. Wire up a network of M-P neurons
that can multiply two 2-bit long numbers, producing output as a bitstream (of up to
4 bits of content)? For this problem you can assume that in addition to the two input
lines (A and B), your network has access to a clock signal that will have value 1 at t=1
(i.e., the first timestep of the input signal) and will be 0 at any other time. You can also
assume that the input streams will have value 0 after the first two time steps. Hand in
a diagram of your network and a description of how it works (you can either go through
examples, or just verbally describe how it works).

4. Can you describe a similar finite network of McCulloch & Pitts neurons that performs
multiplication of two arbitrarily long numbers, input as bit streams into two neurons?
Justify your answer if you can or can’t. Assume now that you know the two numbers are
n bits long. Find and prove a lower bound for the number of internal states the network
will need to be able to store to compute their product. (You don’t have to prove that it
is the best (biggest) lower bound, but the bound should be at least 2", within a constant
factor.) If you generalize your 2-bit network to n bits, how many states does it have?

1.2 Gradient Descent (1.5 points)

You will soon be writing code to simulate artificial neural networks. Very often, this involves
some form of parameter optimization with discrete steps, most commonly using a method
called “gradient descent.” The idea behind this is as follows: suppose you want to find the
minimum of some multidimensional surface. Often the mathematical expression for the surface
is too complicated to permit a direct algebraic solution, so you have to search for the minimum
numerically. If you know the gradient of the surface (and thus the direction in which it goes
down most steeply), then a seemingly sensible idea is to start with a “guess” for where the
minimum is, and then improve the guess by moving it in the direction of steepest descent;
when you can’t improve the guess anymore, then you are at a minimum (possibly a local one,

of course). We write “seemingly” because we will see in later problem sets that this is often
very slow.

This problem and the next one (“Euler Integration”) are intimately related, so you might want
to look them over before starting in earnest; that will give you an idea of what techniques to
use.

Let’s first try this with a very simple surface, a one-dimensional bowl whose height is:
E =2?/2 (1)

(Clearly, the minimum is at z = 0, but pretend you don’t know that right now — in future
problem sets you will test this technique on surfaces you can’t solve analytically, rest assured!)

1. Write a program, using gradesc.m provided in the MATLAB package, that implements
gradient descent for this surface. Initialize z at a random position. Then at each time
step,

o find the gradient %—f at the current position.

e take a step in a direction negative to the gradient, such that

oF
In4+1 = Tn — 77% (2)

7 is called the “time step”. Try running this program for various values of 7. Do not
hand in Matlab code unless the problem set specifically asks for it.

Hand in three plots of z versus n (for different values of 1) that show qualitatively
different behaviors. From your numerical experiments, for what range of values of 7
does this program converge to the correct result?

2. Analyze the procedure to give a theoretical prediction for the values of 7 which would
lead to such results. Does it coincide with your numerical values?

3. Now let’s get just a little fancier. Define a new surface by
1
E(z,y) = %(13;52 + 24zy + 13y°) (3)

Plot the surface in MATLAB (but don’t hand in this plot). Where is the global minimum?

4. Simulate gradient descent for it, so that now

OF
Ip+1l = Tp — 77% (4)
oF
n = (O -~ 5
Yn+1 Y Uay (5)

Hand in three plots, each for a different 7, to show qualitatively different behaviors.

5. Repeat the numerics that you did for z2/2, so as to find the values of n for which the
procedure doesn’t converge. Find a theoretical prediction for this value. (Hint: find z,
and y,, as a function of n.)

Since we’ve gone this far, we might as well go a little further and consider a general sur-
face E(Z) where 7 is a column vector with N components (z1, z2, ...zn). (The problem
you just did would be an example of such a surface, with # having 2 components.) Define
a vector %—g whose i-th component is

oOF OF
(%), = 5 ©

This vector is just a shorthand way of writing the gradient. The gradient descent pro-
cedure would now be

- o OF
Ipn+l = Tp — 77% (7)
Let 2E

The matrix H = [H;j] is called the Hessian.

The Taylor series expansion for F about some point Zj is

E\" 1 ,
E(Z) = E(Zy) + (%) (Z—2y) + E(f—:ﬁ'o)TH(f—j'o) + higher order terms (9)

(with both the gradient and the Hessian evaluated at Zy.)

6. If Zpip is a local minimum, and we are close enough to it that we can ignore the higher
order terms in the Taylor expansion, predict the maximum value of n for convergence
in the gradient descent procedure, in terms of the eigenvalues of the Hessian H at Tmin-
You can assume, without loss of generality, that Zpmi, = 0; this makes manipulating the
equations a little more convenient. (Reminder: what’s the value of the gradient vector
at the minimum?)

7. (optional) Try this for fun: suppose we are at some point Z,, and that Z, is indeed
close enough to the minimum that higher order terms in the Taylor expansion can be
ignored, and that we know what H is at Z,. Assume that H is invertible. Can you find
a closed-form expression for how much we should add to &, so as to jump directly to
the minimum, in a single bound?

1.3 Euler integration (1.5 points)

It’s time to look in more detail at the algorithm you used in the previous problem to implement
gradient descent. In the case of the two dimensional surface, you might have imagined water
flowing downhill, or a ball rolling downhill to the bottom. This illustrates an important
theme in this class, namely, finding physical systems whose intrinsic dynamics carry out a

computation. In the case of gradient descent, this way of thinking suggests a continuous
version of gradient descent, where
OZ(t) OE(Z(t))

ot oz (10)

In a sense, this differential equation represent the true dynamics we are trying to incorporate
into the algorithm used in problem 1.2, which we now see boils down to numerically integrat-
ing the differential equation using a difference equation approximation. In the more general
context of ordinary differential equations, this naive algorithm is known as Euler’s method. It
approximates any differential equation of the form

dy _

= 11
Y 1) (1)
with the difference equation A
Y
—_J — 12
2V 1) (12)
which can be trivially solved for Ay,
Ay = f(y)At (13)

Based on this difference equation, we can iterate our simulation forward one step at a time.

Yerar = Yo + fys) At (14)

The value of At is known as the step size of the simulation. As At — 0, the difference equation
becomes a more and more accurate model of the real differential equation (until the effects of
finite machine precision come into play).

We can convert any high-order ordinary differential equation' to a multidimensional first—
order ordinary differential equation, and thus simulate it with Euler’s method. This is done
by creating a state vector

<y
Il

(15)

The primes denote differentiation by time. Notice that Euler’s method can be applied to
vectors just as easily as scalar variables:

Ay = f(y)At (16)

For example, the linear differential equation y” + 4 + vy = 0 would be written in vector form

as
J =My
0 1 Y

() = (

or even a multidimensional higher-order ODE

1. Show that in the general linear case §' = M@j’, where 7 = (y1, 92,93, -, YN) ",
nae = (T + MA)" o (18)

2. Convert the following differential equations into the state vector form above:
a)y"+y=0, y(0) =1, y'(0)=0
b) y"+01y' +y=0, y(0)=1, y(0)=0
c) ¥ +101y' + 100y =0 y(0)=1, ¢'(0) =-1

Find the closed form solutions for these equations using the given initial conditions.

3. Using the program eulerint .m provided in the MATLAB package, write a program which
can simulate the differential equations above using the given initial conditions. Plot y(¢)
versus ¥’ (t) for each equation, using a reasonable value for At.

4. For each equation, what is the largest step size (Atmax) for which you get non-divergent
behavior? Determine this numerically by trying different values of At.

There are two related but distinct issues to consider here: instability (i.e. unboundedness
as time increases) and accumulated error during stable operation. The second issue is
much more involved than the first, and the relationship between discrete and continuous
dynamical systems has evolved into a branch of applied mathematics in its own right.
For the purposes of this homework set, as will become clear when you have solved 1),
2), and 3) analytically, we are only concerned here with the first issue: instability.

5. Using the same techniques as in problem 1.2, analyze your procedure to obtain the
theoretical maximum stepsize, Atyax, for which the Euler method converges. That is,
we want to know the Atp,y for which the solution doesn’t explode (go infinite) as t — oo.
How do the analytically obtained values compare with the empirical ones obtained from
simulation?

For more thoughts on accumulated error, consult Numerical Recipes in C, by W. Press et al.
(Cambridge: Cambridge University Press).

1.4 APPENDIX: NUMERICAL INTEGRATION

(N.B. This section contains no questions for you to answer, merely some additional notes on
integrating ODEs. Your CNS187 TAs would be remiss if we let you solve problem 1.3 without
a discussion of some numerical techniques other than the Euler method (which is simple, but
not very accurate). This discussion is intended as a supplement to problem 1.3. You should
answer the questions in problem 1.3 as written, but it would be instructive (and not that much
work) to try out some of the techniques presented here. For more detail, consult chapter 8
of Elementary Differential Equations and Boundary Value Problems by W.E. Boyce and R.C.
DiPrima. For even more detail, see chapter 7 of Introduction to Numerical Analysis by J.
Stoer and R. Bulirsh.

Consider the initial value problem

!

y' = f(v),y(zo) = yo, (19)

which we will denote IVP. This is just a single first order equation, but all the techniques
discussed here apply to systems (where y is a vector) as well. Let the solution of this ODE be

Yn = ¢(zn) (20)

We can integrate IVP from one step to the next and obtain
In+1
Hans) = o) + [F($)is (21)

Zn

If we knew what the value of the integral was, we would have a solution for ¢. Since we
don’t, we have to resort to approximation. The Euler method makes the simplest possible
approximation:

/ T F9@)de = hf (). (22)

where h = 2,41 — x,, is the stepsize (denoted At in problem 1.2). Graphically,

flyn)

Xn Xn+1

One obvious improvement on this is to use a trapezoidal approximation:

/ " (b)) & (B/2)(F(yn) + Flmer)) (23)

How do we know f(z,4+1) you're wondering? Once again, we make an approximation (look
familiar?):

f(yn+1) = f(yn + hf(yn)) (24)

Putting all this together, we obtain the Heun formula

Yn+1 = Yn + (0/2)[f (Yn) + f(yn + hf (yn))]; (25)

which, remarkably, has a discretization error of O(h?) as opposed to O(h?) for the Euler
method. (An approximation is called n-th order if its error term is O(h™*1). Thus, Euler is
first-order, Heun is second-order.) Graphically,

1y,

fy)

Xn Xn+l

Higher order methods can be obtained using similar approximations. Numerical accuracy and
efficiency are always a concern when doing simulations. When solving problem 1.3, it would
be helpful to write your code so that you can try various integrations techniques just by calling
different functions. Even higher order methods, such as fourth order Runge-Kutta, although
somewhat tricky to derive, are not difficult to implement.

