CNS 187 - Neural Computation
Solution Set 0

It is highly recommended that everyone download and work through the linear algebra review,
now available on the class web site.

0.1 Linear Algebra

e For the two generalized matrices

ail a12 b11 b12
A= B= 1
( a1 a2 ) ( bo1  b22 ) (1)
a) Write down AB.
AB — <a11bl1 +ai2b21 aiibia + a12b22> (2)
a21b11 + agba1  az1big + asnbao

b) For general A of size n x [ and B of size [ X m, write the component AB;;, in terms of a
sum over the products of the elements of A, a;; and B, bjy.

I
ABi = aijbjk (3)
7j=1

-1

0 1
eIfA=|1 0 1
1 1 0

c) determine the eigenvalues and eigenvectors of A

Given an n x n matrix A, a scalar X is an eigenvalue of A if there is a nonzero column vector
x such that Ax = \x.

This can be rewritten as (A — AI)x = 0, which has a non-trivial solution only when

det(A — AXI) =0 (4)
-2 -1 1
I -2 1= 2N -D)+(-A-1D)+(1+XN)=0 (5)
11 =

Solving for lambda, we find three eigenvalues, A = —1,0, 1.

To find the eigenvectors, solve the equation (A — AI)x = 0 for each eigenvalue.
-2 -1 1 0
1 —>\ 1 0 (6)
1 0



A1 —zo+x23=0
1 —Axo+ 23 =0 (7)
1+ 29— Ax3 =0
Solving the equations, we find that for
1/v2
A=-1 x= 0
_1/\/5
1/V3
A=0 x= —1/\/3
_1/\/5
0
A=1 x=[1/V2
1/v/2

or some constant multiple thereof.

d) Adding any NT to the matrix results in changing the eigenvalues, but not the eigenvectors.
For the matrix [A + 2I], the new eigenvalues are 1, 2, 3. Each eigenvalue has increased by
two, but still corresponds to the same eigenvector.

0.2 Random Walk

It’s 2am and the Rathskeller has just closed for the night. N drunk graduate students and
professors pile out of the bar onto the olive walk. At every step, each stumbles one step of
length A to the left or right along the sidewalk with equal probability. After R steps, what is

a) the mean position of the members of the group?

Take s7 to be the 7' step that person i takes. Each s7 is A with probability 1/2 and —A with
probability 1/2. All the s} are independent identically distributed (i.i.d.) random variables.
Take z;(R) as the position of the i'® person as a function of the number of steps, R; z;(R) is
also a random variable.

Then:

1 N
m(R) = > ai(R) )
i=1
And the expected mean position of the group is:
1 & 1 L1 Kl
(m(R)) = = S a(R) = = 3 = S5 (-A) +5(8)) = 0 (10)
i=1 =1 r=1



The expected position of any given individual is also 0, of course.
b) their r.m.s. distance from the bar?

The mean, however, can deviate from its expected value on any given trail, the amount of this
deviation is also a random variable, with the value

=
=
!
3
=
|
3
=

(11)

The variance is then:

0® = (B*(R)) = ((m(R) — ((m(R))))?) = (m(R)?) (12)

Because (1) variance is additive for i.i.d. variables, and we know that (2) multiplying a variable
by a scalar multiplies its variance by the square of that scalar, we have:

1 R R (1 1 RA?
2y L 12y _ foyayey 0L Ao L oave )
(m(R)?) = 5 NR{6H - 617) = T ((617) = 2 (Gar+307) = B )
Thus the r.m.s. distance of the group from the bar is %. Note that the r.m.s. distance of

each individual is much greater: it is v/RA. The group (that is, their mean position) varies
less than an given individual, on average.

0.3 RC Circuits

Counsider the low-pass filter:

\ - out

oV, t<0
Vi — ? 14
" {5[/, t>0 (14)

a) Sketch the voltage response of the circuit as a function of time, with and without the
parallel resistance, .
b) Give the functional form of this response, again with and without the parallel resistance.



We can start with Kirchoff’s Current Law (the sum of the currents out of a node equals zero)
to set up the differential equation of the system as follows.

d‘/out + ‘/out - Vz

C =0 15
dt R (15)
Which we will rewrite as v v
V out A _ 16
ot RC T RC (16)
For t < 0, ®out = 0, and Ve = 0
For ¢t > 0, assume a solution of the form V,,; = ae* + ¢. Since at t=0, Vot = 0,¢ = —a.
Substituting this back into equation 16,
At g
)\ae)‘t+£—i—ﬁ 0 (17)

RC  RC RC
This has to be true for all ¢t > 0. So it must be true that
a 5

a
A — =0 d — =0 18
“Tre~" ™ RcTRe (18)
Therefore A = Ig—é and a = —5, giving us an equation for V,;
Vour () = 5(1 — ¢ ) (19)

So the response function has the form

Response for RC=200s
T T T

I I I I I I I I I
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Time/sec

In the second case, we again use Kirchoff’s Law to obtain the differential equation

Vi — Yout dVout Vout
= 2
R ¢ dt + T (20)




We can use the substitution as above, or more mechanistically use the Integrating Factor
Method!, for solving equations of this form.

- outef:l v % / f r % dth dt (21)
RC
SO
V;n C _t(l 1
Vout = — | ——— — De cGtg) (22)
Cdkss

At t=0, the capacitor is uncharged, so V,,: = 0, hence we have

Vout = }:/Zﬂ’l [1 —€ é( R)] (23)

which looks very similar to above, but has a shorter time constant, and V,,; has a maximum
Vin
value of x e

T

Response for R=10, C=20, r=100

0 I I I I I I I I I
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time/sec

!This method is a completely general form for first order linear differential equations. See any diff-eq book,
e.g. M. Braun, Differential Equations and Their Applications, pages 1-9.



0.4 Convolution

;
f(x)=
0 30 -
;
g(x)=
0 10 o
100
h(x)= 50
20 o 0 o 2o o 4o

Given the form of the functions f(z) and g(x) in Figure 2, sketch roughly the form of

+o0
h(z) = / 9(s)f (z — s)ds (24)

—0oQ

on the outline above, indicating the relative amplitudes at x = 30 and z = +oc.

It is easy to do this problem if you realise two key points

e The value of the integral at each value of z is the area under the product f(x) and g(-s)
aligned such that s =0 is at z.

e g(z) can be treated as roughly triangular to get the idea of what is going on at z = 30
and z = +o0.

At 2 = 30 the area under the products is half the area of g(x), which is roughly 50. At z > 30
the product of the two functions is just g(z) so h(z) is equal in value to the area under g(z),
roughly 100.

0.5 Steepest Descent

q(z,y,2,s,t) =sin(z +y) + z + (25)

2s + 4t

If youareat x =1,y =1,z = 1,s = 1, = 1, and you take a very small step of length L in
some direction, in what direction should you take the step to decrease q the most?



The direction of steepest descent of the function is —Vgq(z,y, 2, s, )

Oq. Oq. O0q. O0Oq. O0q.
_ - [ == b e = —= 2
Vq (axw+ ayy+ azz+ 8ss+ 8tt (26)

= (z+y)2 (z+y)g—2+ 2y (27)
= —cos(z+y)T —cos(z+y)y—2 (2s+4t)23 (25 1 402
or
—cos(z +y) —cos(2)
—cos(z +y) —cos(2)
-Vq = -1 = -1 (28)
2 1
(23—24?5)2 ?
(25+4t)? 9
0.6 Probability Density Functions
2
pPx) = 1
0 i 3 3%

For the normalized probability density function, p(z), write an integral expression in terms of
p(z) for:

a) the mean, or expectation value, (z).

+oo
(z) = / op(z)da (29)
b) the variance, (z?) — (z)%.
+00
(#2) = / 2p(z)dz (30)

c) If p(z) has the form shown in Figure 3, evaluate the mean and variance of x.

! 2 2
(x) :/0 222 dr = gws li= 3
2 s Ly 1
(z%) :/0 2z°dr = 3% lo= 3 (31)
1 22 1

<$2>_<I)2:§_3_2:E



0.7 Simple Oscillating Systems

A horizontal, damped mass-on-spring oscillator is shown in Figure 4.

viscous medium
coefficient, [1.

k P

—

0 X

If the viscous damping force is given by —ai, the equation of motion of the system is given
by
mI + ot + kx =0, (32)

a) This may be written as
y = Ay , where (33)

A= (o 02) = (i —apm): o

b) Recall that Eqn. 33 is solved by an expression of the form ety (0), where eA* = T + At +

(an* + (an? + -+ (if you'd like, plug this in to remind yourself why!). A convenient way to

2 3
compute eA? in terms of the eigenvalues and eigenvectors of A is
eAl = pefrtp! (35)
where (assuming that A is diagonalizable) A is the matrix
A1 0
(o ,\2> (36)
of eigenvalues of A, and P is the matrix whose columns are the corresponding eigenvectors

vl, v2.

The solution to (33) is eA? = PeAP~1y(0) for arbitrary initial condition y(0)

I
VRS
< <
N N
o O
~— —
N =
\/

Letting P~y (0) = (gl), we have
2

ey (0) = creMtvy + cpe?tvs. (37)

This shows how the eigenvalues and eigenvectors of A are related to the solution of (32).



The eigenvalues of A are \j o =1/(2m) (—a ++Va? — 4km), hence
y(t) = ciexp [% (—a +Va? — 4km)] v1 + coexp [ﬁ (—a —Va? — 4km)] vy .

c¢) Note that for k& > k¢ = %, the arguments of both exponentials are imaginary, leading to
oscillations of solutions around the equilibrium z = v = 0 (to see this, recall Euler’s formula)
(plot II). These oscillations decay, since the real part of these arguments is always negative.

For k < kerit, solutions simply decay to equilibrium (plot I).

The moral of this exercise is that qualitative information about the behavior of
solutions to linear differential equation systems (or, locally, linearized nonlinear
systems) of arbitrarily high dimension can often be gained by writing the equation
in “matrix form” y = Ay and finding the eigenvalues of A.



