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Abstract

A previous paper (Hopfield and Brody (2000 Proc. Natl. Acad. Sci. USA 97, 13919
13924 described a network of simple integrate-and-fire neurons that contained output
neurons sledive for spedfic spatiotemporal patterns of inputs; only experimental
“results’ were described. We now present the principles behind the operation of this
network, and dscusshow these principles point to a general classof computational
operations that can be eaily and naturally carried out by networks of spiking neurons.
Transient synchrony of the ac¢ion potentials of a group of neurons is used to signa
‘recognition’ of a spacetime pattern aaossthe inputs of those neurons. Appropriate
synaptic coupling produces g/nchrony when the inputs to these neurons are neally equal,
while leaving the neurons unsynchronized or only we&kly synchronized for other input
circumstances. When the input to this s/stem comes from timed past events represented
by decaying delay adivity, the pattern of synaptic connedions can be set such that
synchronization occurs only for seleded spatiotemporal patterns. We show how the
reaognition isinvariant to uniform time-warp and to uniform intensity change of the input
events. The fundamental recognition event is atransient colledive synchronization,
representing ‘many neurons now agree’ an event that isthen easly ‘deteded’ by a cdl
with asmall time constant. If such synchronization is used in reurobiologicd
computation, its hallmark will be abrief burst of gamma-band EEG noise when and
where such areaognition event or dedsion occurs.

Introduction

How is information about spatiotemporal patterns integrated over time in order to
produceresponses sledive to spedfic patterns and their natural variants? Such
integration over time is a fundamental component of sensory perception. Information
must of course dso be integrated over space but this problem is much better understood:
for example, visuospatial information is initially encoded in the retina through a ‘labeled
line" code (1) whereby individual retinal ganglion cdls respond only to stimuli ina
restricted pert of visual space(their receptive field). Integration over spaceisthen a
straightforward matter of converging inputs from cdls with different receptive fields. In
contrast, the fundamentals of how temporal information is represented and how it can be
integrated remain mysterious. This is particularly true for timescaes longer than a few
tens of milliseconds, at which point transmisson delay times can no longer be used as



biologicdly plausible building blocks for bringing information from different times
together (2, 3). Integration over times on the order of 0.5 seaonds or longer, in
biologicdly plausible networks, is a principal focus of our report. The principles
underlying such integration over time in fad belong to a broader and more general class
of computations.

The ideas will be illustrated by studying a particular case of reaognizing spatiotemporal
patterns of events. Short spoken words can be encoded into such a representation, by
deteding feduresin different frequency bands of a spedrogram (4, 5). The spedfic
example used in the previous companion paper (‘paper I’, (6)) and used here again, will
be that of reaognizing the spoken word ‘one’ after it has been encoded into a
spatiotemporal pattern of events. Numbering of Figures will start with Figure 7,
continuing from paper 1.

Thenatural coding of time in decaying delay activity. Neurona responsesto transient
stimuli decay with awide variety of different timescaes, ranging from tens of

milli seaonds to tens of seaonds. At the longest timescdes, the adivity is often referred to
as ‘delay adivity’ (7, 8, 9, 10). When such adivity decays with time, the ratio of the
present adivity to the adivity at initiation implicitly encodes the time that has elapsed
sincethe initiating event occurred. Thus, time, on many different scdes, is naturally if
implicitly encoded at many levels of processng in the nervous g/stem.

Consder a set of decaying adivities where the initial firing rate for ead neuron is the
same for all eventsthat are @le to trigger that neuron. Then the neuron’sfiring rate s, by
itself, an implicit measure of time sincethe triggering event. We will describe how a
network of spiking neurons can carry out computations on such a representation of time.
In the discusson sedion, we will briefly describe how to generalizeto the situation
where the initial firing rates are not stereotyped.

Recognizing a spatio-temporal pattern

We wish to recognize whether a pattern of spacetime events described by a set of timest,
lying within an interval of ~0.5 sec approximately match with a model of eventst™.

Only relative time differences within ead pattern are important—the overall time &
which the test pattern of events occursis arbitrary. We will refer to eady index i as an
‘input channel’. Consider a pattern composed of three &ents, one in eat of three
chanrels. One event occurs at 0.075se¢ one & 0.150sec and one & 0.300sec. Let eath
of these eventstrigger a set of currents with a variety of fixed decay rates, illustrated in
Fig 7a. Now suppose that this pattern (0.075, 0.150, 0.300) is the target pattern to be used
asamodel. It is possble to seled threedecay rates, one per channel, that generate
currents that reat almost the same level at sometimet, (ringsin Fig. 78). There ae
many possbilities for t, but having picked t (larger ring in Fig. 7a), the set of decyy rates
isunique (seleded currents $rown in Fig. 7b). When the pattern of input event timesis
close, but not identicd to the target pattern, the seleded currents will be triggered at



times such that the convergencened is not apoint but is gill small (Fig 7c). When the
input pattern has no relationship to the target pattern, there is no such convergence (see
Fig 7d. Thus, the degreeof convergence of these aurrentsis an indicaor of degreeof
similarity to the original pattern.

How can the convergence of current levels be deteded? Suppose eat of the seleded
currents drives an integrate-and-fire neuron. Synaptic connedions between neurons that
have similar firing rates often produce synchrony between the ac¢ion potentials of these
neurons (11,12). When the input pattern matches the model, the aurrents driving the
neurons will converge & some point in time, the firing rates of the driven neurons will
then be similar, and synaptic coupling between neurons $ould lead to strong transient
synchronization of their adion potentials nea this time. When the input pattern is very
different from the model, there will be no convergence of input currents and firing rates,
and therefore there will be little synchronizaion. Transient synchronization of neurons
with convergent firing rates is thus the fundamental recognition event. The predse degree
of synchronization depends on how close together the firing frequencies are, on the
strength of coupling between the neurons, and on how many neurons are involved.
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Figure 7. Time-warp invariant convergence of decaying currents. a) Decying currents triggered by events
in threedifferent channels, oneat 0.075secs, oneat 0.15 secs, and one a 0.3 secs. Responses for different
channels are shown in different shades of gray. Theringsidentify pointswherethree arrrents, onefor each
channel, converge. b) The mnverging currentsfor thethree wrrents sleded by thelarger ringin pand (a).
€) Aninput pattern that is smilar to the target pattern. d) A temporal pattern very different to the target
pattern. €) A time-warped version of the original pattern.

Invariance with resped to some parameters is often a desirable feaure of recognition
systems (e.g. recognizing the identity of afaceindependently of its Patial scae,
reaognizing an odor independently of its overall concentration). The @mnvergence of
current levels contains a natura invariance When the target pattern isrescaded in time
(time-warped) and presented to the system, the seleded currents converge (Fig.7e), abeit
at adifferent common level. We have ill ustrated this point in Fig. 7 using linea decays,
but, as we will now show, the result holds more generally, including exponential decys.
A uniform time-warp by a scde fador s changes the intervals {t, —t,, t,—t, ...} to the
pattern {s(t, —t,, s(t,—t, )}. Supposethat after an event at timet, the currentsthat
respond to this event with avariety of decgy times T, are afunction only of the variable (t
—t)/t,. That is, there isa universal form function f((t —t)/t,) for the decaying currents,
and the different decgy rates are obtained by having dfferent values of t,. For ead input



channel i, we choose adecgy time T, such that the airrents from the different channels are
al thesame d timet: (t —t)/t, = (t —t)/t, forali. But for aninput pattern scaed by
sitisalso truethat (st —st)/t, = (st —st)/t, for all i, so the same set of currents, with
the same decay rates, will again read a point where they are dl equal (although the time
and level at which they mee will be different from the cae s= 1). Thisresult, which
does not depend on the form of the decgy function f(), is what makes the time-warped
example of Fig 7e till have a onvergence, even though the warp-fador sis quite
different from unity. Degreeof convergence of current levelsis atime-warp invariant
indicaor of degreeof similarity to the original pattern.

The recognition can be described in terms of a pattern match of times of occurrencet,
with amodel for these eventst™. The match is carried out including an arbitrary scding
fador sand an arbitrary shift t,.. Events present in the model but missng in the
presented pattern merely deaease the size of the signal at recognition, and thus require a
better match of other timesto generate reaognition. When most of the events agreeon
t... and s, eventsthat disagreegrealy are essentially ignored, viewed as not even
ocaurring. The esence of the dgorithm implemented can be described mathematicdly
by finding the maximum over sand t_.. of the function

shift

recognition score = 2, W( (s, —t" -t )" + W)™

The sum is carried out over al channelsi that contain events both in the model and in the
incoming pettern. W is awidth parameter determined by the strength of the synaptic
coupling in the synchronizing system. The particular functional shape of the termsin the
sum is arbitrary. Thisform of recognition score is realily extended to more daborate
systems with multiple events within asingle dannel, to weighting events differentialy,

and to having eventsthat are inhibitory in charader.

Experiments on speech

Paper | was a demonstration of these ideas applied to speed. There, sound waveforms
were transformed into spatiotemporal patterns of events by deteding onsets, offsets, and
pedks of power within various frequency bands. There were 40 dfferent input channels,
ead of which corresponded to a particular detedor type (i.e. onset, pe&, or offset) and
frequency band combination. An event on any one of these dannels was analogous to
one of the events down in Fig 7a, and triggered the start of a set of dowly decaing
currents, of which there were 20 for ead channel. With 40 channels, this made atotal of
800 dfferent input lines. The full set of 800 such inputs were labeled in paper | as ‘inputs
fromareaA’. Most speed files had events on al 40 channels, so typicdly al 800input
lines were adivated in response to any single speed file. Eadch one of these 800input
currents was used to drive asingle excitatory and a single inhibitory cdl in apool of
otherwise identicd integrate-and-fire neurons that were labeled in paper | as‘a
(excitatory) and (3 (inhibitory) neurons of areaW’. The smooth input currents from area
A can ead be thought of asthe sum of the inputs from a large set of closely similar



unsynchronized neurons. Responses of single aeaA neurons were ill ustrated in Fig. 4 of
paper |.

‘Training’ the network to reaognize aparticular template of spatiotemporal events
consisted smply of seleding a set of aand 3 neurons that would have converging firing
rates in response to the target template (analogous to seleding the large ring in Fig. 7a),
and creding mutual all-to-al connedions within this st. Importantly, the strength of
excitation and inhibition in the dl-to-all coupling within this st was balanced, so that
even when many neurons were driven by speed, the net input current to a cdl came
chiefly from itsinput from areaA. All the excitatory connedions were made equally
strong, and al the inhibitory connedions were made equally strong. The fast excitatory
synapses and longer-duration inhibitory synapses then led the neurons to synchronizein
response to the target template. These neurons also synchronized in response to input
patterns that were similar though ot identicd to the template, and in response to time-
warped versions of the template (Fig. 8a,b). Time-warp invariance was a key component
of the &bility to generalizefrom asingle example. In contrast, stimuli that were
significantly different from the target template did not lead to convergence of the
neurons firing rates (Fig. 8d), and in this case the neurons did not synchronize strongly
(Fig. 8e). The seleded set of excitatory and inhibitory neurons was also conneded
diredly to an output neuron (labeled asa‘y' cdl in paper I). When the neurons
synchronized, the y cdl recaved a high-amplitude oscill ating input current that drove it
to firein a dharaderistic burst of 30-60 Hz (Fig 8c). When the neurons s/nchronized
wekly or not at all, the y cdl was not driven to fire (Fig. 8f).

Very strong oscill atory drive can generate dose doublets of adion potentials on eadt
‘cycle’, with separations little more than the @solute refradory period. We have seen
such doubletsin al cdl types.

Possible enhancements. Two enhancements to the system, one having to do with
multiple events and one with the role of negative evidence, improve the performance of
the system both on speed and probably in other pattern recognition problems. For
simplicity, we refrained from implementing these enhancements in Paper I. In the system
described, once a c#in areaA was launched on its gereotyped response, it continued
that response until the end of its decg. A seaond event of the same type occurring within
the response time of this cdl was smply ignored. The system functions better when the
information carried by second or further eventsis not lost, even if they occur within the
response time. This can be adieved by having a poadl of cdls of eat type in areaA,
with ead having a small probability (for example, 0.3) of being adivated when its
appropriate fedure aises. In this case, two different sets of neurons will be (statisticaly)
turned on at two different times by two feaures of the same type, even though they occur
close together intime. When two fe&ures of the same type occur within a given word,
both feaures can then contribute to the reaognition.
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Figure 8. Synchronization indicates recognition of an input pattern that is smilar (within time warp)
version of the target pattern. a) The 40 currents from area A that converge in response to the target
template. Here they almost converge near time=0.6 secs, in response to a pattern similar but not identical
to the target. b) Spike rasters of responses of 160a or 3 neurons. Each dot represents an action potential,
each row corresponds to a single neuron. Forty of the neurons, shown below the gray line, belong to the
sdleded s, driven by the airrrents siown in panel (a), that corresponds to the target pattern. Note the
neurons synchronization. The other 120neurons (above gray line) are randomly drawn from the rest of the
population of a and 3 neurons. c) Intracdlular potentia of the y neuron that recevesinput from the
seleded set of a and B neurons. The y neuron spiking threshold has been set to infinity here, to all ow full
observation of the synapticall y-driven membrane potential; y neuron firing threshold is normally -55 mvV
(horizontal dashed line). Synchronized input leads to strong oscill ations and many threshold crossngs.
Random fluctuations in the oscill ation amplitude @n lead to accasiona ‘missng’ y spikes (arrow). d,ef)
Same format as panels a,b,c, in response to a non-target pattern. d) Input currents do not converge. €)
Neurons g/nchronize only weakly. f) y cdl does not fire.



A seoond enhancement isin regard to the fad that events at particular times may
sometimes be evidence aganst reagnition of atarget pattern. For example, a particular
event occurring at a particular time might be dharaderistic of a pattern that is smilar to,
but different from, the target. By using slightly modified inhibitory synaptic biophysics,
such regative contributions to the reagnition computation can easily be included in the
framework we have described. Let the new inhibitory synapses have afast, amost
instantaneous rise time similar to the excitatory rise time, yet let them till have aslower
decg constant of 6 ms. Keeoing total excitation and inhibition currents balanced means
that the initial pegk current due to smultaneoudly adivated excitatory and inhibitory
synapses will till be excitatory. This was the key fedure that enabled synchronization, so
the network of cdlswill still synchronize Now let the a and B cdlsthat correspond to a
negative evidence event recave the usua input from the other, positive evidence cdis.
These negative evidence cdlswill then synchronizewith the positive evidence cdls if
their input from areaA drives them at the ‘right’ time. Finaly, conned the negative
evidence 3 cdlsto the y-cdl and the positive eridence cdls with the fast rise time
inhibitory synapses described above, but conned the negative evidencea cdlsto the y-
cdl and positive evidence cdls with dow excitatory synapses (e.g. NMDA synapses).
Then the fast part of the synaptic current receved from the synchronized negative
evidence a—f3 cdlswill be inhibitory. Thiswill both make the y-cdl I esslikely to fire and
inhibit the synchronizaion of the positive evidence cdls. This enhancement is posshle
because in a system of synchronizing neurons, detail s of synapse time response and
membrane time mnstants can strongly affed the cmputation that will be performed.

We have caried out explorations that suggest that with these two enhancements,
interesting discrimination is achievable even with conneded speed, and with speed-like
noise in the badkground.

Properties and extensions of the recognition system.

Multiple patterns. Embedding multiple patterns within the same network of a and 3
neuronsis graightforward. In paper |, we ‘trained’ for the template that corresponded to
an example of the spoken word ‘one’. We then in addition trained for 9 other, randomly
chosen, templates (lists of 40 times drawn independently from a uniform distribution in
the range [0, 0.5]). This was done by simply adding the synaptic connedions between a
and 3 cdlsthat corresponded to eat successve template if the cnnedions did not
already exist. At the end of this process ead a or 3 neuron was a member of the seleded
set of, on average, 1.45target patterns. (The final number of a and (3 neuronsin the
network was lessthan 800 because neurons that did not participate in any patterns were
deleted.) Nevertheless when testing with one pattern, the overlap between the diff erent
sets did not cause adisabling spread of synchronization to neurons participating in
patterns other than the one presented (seerasters of neurons above gray linein Fig. 8b).



In asmall set of exploratory experiments, we have successully embedded 25random
patterns in the network, so eat a or (3 cdl participated, on average, in the memory of
more than 2 patterns. In this regime, excitatory and inhibitory currents due to the
numerous reaurrent synaptic connedions between a or 3 neurons are larger than the input
currents from areaA, yet the cdls gill synchronize seledively for their input patterns.
The caadty is, however, limited; in the limit of an infinite number of embedded

patterns, al a and 3 cdls are mnneded to ead other, and the neurons g/nchronize under
all circumstances. The trangition between the two regimes (seledive synchronization in
response to spedfic patterns, ‘epileptic’ synchronization in response to al patterns)
appeasto have the nature of a phase transition. We dso tried seledively deleting the few
o or 3 neuronsthat, in any particular instantiation of the network, randomly happened to
participate in the largest number of patterns. When this was done, the number of
embeddable patterns per cdl that could be stored before readting the epileptic regime
was made substantially larger. Thus, the topology of the patterns and connedions
between them seams highly relevant to the capaaty of the network.

Extensions. The properties of the system we have described do not depend criticaly on
the detail s of its construction. In this ense, thereis alarge ‘spacée of neural circuits with
properties smilar to the ones demonstrated. For example, the system described had a
balance between excitation and inhibition, achieved by having both excitatory and
inhibitory cdls driven from areaA. However, an equivalent balance can be atieved ina
neural circuit in which areaA drives only a cdls, and the inhibitory (3 cdls recave input
only from a cdls. We have shown in simulations that such a system works as well asthe
one described, even when using cdl properties such that the inhibitory cdls dow little
synchronizaion.

Balance prevents the @rruption of the basic input information arriving at the a and 3
cdls (i.e. theinput currents from areaA) by the reaurrent synaptic inputs that are
essential to generate the mlledive synchronization. Balance between excitation and
inhibition isimportant in the present network when multiple patterns and multiple y cdls
are to be supported by the same set of a and 3 cdls. (An unbalanced system may also be
useful in some ntexts.) Balanced excitation and inhibition has been proposed as the
medanism behind the irregular firing of corticd cdls (13,14,15). Brief explorations with
large networks have shown that even at large noise levels that lead to charaderisticaly
irregular firing of single a—f3 cdls, network-level colledive synchronizaion, pradicdly
undetedable & the single or paired neuron level, can till occur.

In paper | and our multiple pattern experiments described above, al excitatory synapses
froma cdlsonto a and 3 cdlswere equally strong, and al i nhibitory synapses from 3
cdlswere gqually strong. Similar smplifications were made in connedionsto y cdls.

This arrangement was arbitrary. That large random variations in synaptic strengths (see
paper 1) did not affed the recognition is a strong indicator that the pattern of connedions,
not the detailed synaptic strengths, is the key to pattern-seledive synchrony. Fine-tuning
for optimality would involve synapses having a range of strengths.



Discussion

To learn to reagnize apattern, the synaptic strengths must change & aresult of pre-and
post-synaptic cdl adivity. The kind of relationship between synapse dhange and the
neuronal adivity that is desirable for recognizing a new pattern is closely related to
known reurobiologicd temporal leaning protocols. If a and 3 cdlsare conneded to y
cdlswith initial excitatory and inhibitory synapses, the y-cdls will not be driven until the
a and (3 cdls develop colledive synchrony. When this happens, y cdls will fire just after
the a cdls do, and plasticity protocols that have been described experimentally (16, 17)
will l ead to strengthening and pruning appropriate for a to y cdl synapses. For
developing appropriate a to a connedions, sightly more complex leaning rules are
necessary: for example, a synaptic enhancement requiring the occurrence of 2--4 nea-
coincidences (but not on average, by a single nea-coincidence) between conseautive
adion potentials of the pair of cdls, with both cdlsfiring eat time, over atime period
of ~0.1 sec, would be very powerful. This event will be common when two cdls are
firing at Amost the same rate, would be generated by the temporal crossng of the firing
rates of apair of cdls, and is unlikely otherwise. Synaptic modifications due to crossng
firing rates sem not to have been studied experimentally.

The stereotyped response strengths used in paper |, where aeaA neurons responded with
the same initial firing rate regardlessof the intensity of the event that triggered them, is
not common in kiology, but is also not necessary in the present system. If the initial
amplitudes of the signals from areaA are afunction of the salience of the events, all
scding together when the events are more salient, the mnvergence properties that led to
synchronization and pattern seledivity are preserved. Such a system has two scdar
invariants to its reaognition process invariance with resped to time-warp and invariance
with resped to pattern salience. Cleverer encodings of signals into responses of areaA
cdls could lead to the aility to generate convergence and transient synchronization with
more complex invariants.

The mammalian olfadory bulb shows grong y-band locd EEG behavior (18), and there
is evidencein lower systems for the role of synchrony and of oscill ation in olfadory
pattern discrimination and leaning (19). In mammals ead of ~2000 domeruli has an
input that is proportional to the time-dependent odor strength during a sniff, with a
proportionality coefficient that depends on the type of receotor cdls which impinge on
that glomerulus. To form a olledive synchronizing system of the type described here in
response to atime-varying input (20), it isesentia to link together mitral cdls which
transiently recave the same strength of synaptic input. A given odor will drive different
glomeruli with different strengths. These two fads need not contradict if the different
mitral cdls driven by a single glomerulus have systematicaly different responses to the
drive of that glomerulus, either in the arrent which they recave from that glomerulus or
in their threshold charaderistics. The 1:25ratio of glomeruli to mitral cdls would then
have the computational function for olfadion that the 20 dfferent time-decaysin areaA
have for the speed problem.



There is potential for analyticd treament of the transient synchronizaion in speda
cases. An ‘effedive field' treament, exad only in the limit of infinite N, will be
quantitatively useful for large but finite N, the biologicd case, and has me prosped for
treaing the red dynamicd problem in which the distribution of input currentsis broad,
then narrows, and returnsto being broad. For studying such effeds, the system can be
simplified thorough amalgamating a and 3 cdlsinto asingle cdl type with a synaptic
current that sumsthe EPSC and IPSC. Indeed, the simplest biologicd network of this
sort may be aset of mutually conneded inhibitory neurons coupled by synapses and by
gap junctions (21).

Conclusion

Many possble roles have been suggested for synchrony (19, 22, 23, 24, 25). Here we
have focused on the description of a medhanism by which transient synchrony may arise
and on a omputational algorithm that exploits this mecdhanism. The fundamental
observation made in this paper was that since wegly-coupled neurons with similar firing
rates can easlly synchronize (11, 12), neurons with transiently similar firing rates can
transiently synchronize, andthat this transient synchronization can serve as a powerful
computationd todl. Deteding transiently similar firing rates is an operation that is very
naturally and easily carried out by networks of spiking neurons: simple mutual
connedions between neurons sufficeto cary it out. The resulting colledive
synchronization event, which might be described asa‘MANY VARIABLES ARE
CURRENTLY APPROXIMATELY EQUAL’ operation, isabasic computational
building block. An understanding of transient synchrony as a cmputational building
block allowed the design of a network that displayed time-warp invariant spatiotemporal
pattern recognition of red-world speed data. The recognition event in this network was a
colledive transient synchronization, effedive in repeaedly driving an otherwise silent 'y’
neuron. Stimulus-dependent synchrony in computational networks of neurons or neuron-
like dements has been previously described (e.g. ref. 26), but generally with resped to
static patterns that do not involve temporal integration or transient synchrony.

Just as integrate-and-fire neurons can be thought of as naturally implementing a fuzzy
‘AND’ or afuzzy ‘OR’ operation (depending on the settings of the cdl’s parameters),
networks of appropriately configured spiking neurons naturally implement a fuzzy
‘MANY ARE NOW EQUAL’ operation. This operation can serve many computational
roles, in addition to the one demonstrated here. For example, it could be used to segment
two odors that fluctuate independently in time (20), or the output of the y cdls themselves
could be turned again into a smoaoth current, on which further computational operations
could be caried out. The ‘MANY ARE NOW EQUAL’ synchronizaion operation may
be & fundamental and general a computational building block, at the level of spiking
neuron networks, asthe firing threshold isin single spiking cdls.

Networks of neurons where excitation and inhibition are roughly balanced, often
described in the computational neuroscience literature (13,14,15), can easlly cary out
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computation by transient synchronization on top of, and separately from, the encoding of
information in the neurons’ firing rates.

When reurons are aranged in an orderly fashion, synchronized adivity in a cdl typeis
expeded to produce aburst of gamma-band EEG. One wuld easily be led to wonder to
what extent the frequently observed locd burst of gamma adivity (27) can be asociated
with dedsions of the type described here.

Conredionist modeling of higher nervous function is often based on non-spiking units,
the dharaderistics of which are inspired by approximate rate-model properties of single
neurons. Such units are typicdly used to represent many individual neurons, averaged
into asingle 'effedive processng wnit'. In contrast, the wlledive dfedsand dedsionswe
have presented here cannot be described in a similar fashion. That is, the higher-level
mathematica description of adedsion by a group of synchronizing neurons beas no
resemblance whatsoever to the mathematica description of a single neuron.
Hydrodynamics serves as a useful analogy: we know that the mathematics of
aeodynamics relevant to airplane design cannot be described in terms of huge 'effedive
moleaules’ colliding with an airplane wing. Similarly, we wonder how much of higher
nervous function will be usefully describable with the mathematics of sigmoid units asits
basis.

Appendix

How did the single unit results of paper | point the way? We have daimed that the
‘experimental’ information presented in paper | was sufficient to deduce the principles of
operation behind the system. We now describe one deductive dhain that leads ineluctably
from the experimentsto the principles. Examining the implications of the raw basic data,
and not merely relying on a conventional and incomplete summary of that data (in this
case, the PSTH), is key to finding the computing principle of this g/stem.

What could be responsible for the spike rasters of ay cdl in areagnition event,
consisting of aslow burst of 3-8 adion potentials at 30-60 Hz? 1) Bursting could be an
intrinsic cdlular property due to complex biophysics. 2) The input current could briefly
rise from below threshold to a nealy fixed plateau. Or 3) the input current could itself
contain the rhythm, and have astrong 30-60 Hz oscill ation.

Sincethe y neurons are simple ‘le&y integrate-and-fire’ neurons, they do not have an
intrinsic ability to generate bursts making 1) imposshble. The slow bursts must be due to
synaptic aurrents. A comparison of the different rasters of a single file shows
compellingly that 2) cannot be the case. Most of the spikes of one raster correspond well
to spikes in another if small shifts are made in the time ais, excet that some of the
spikes appear to be missng. Figure 9 shows 6 spike rasters from Fig. 1a (above) and 6
rasters from Fig. 1c (below), time-shifted by small arbitrary amounts into alignment. All
of these spiketrains are \rtualy identical except for occasond ‘missng spikes'. Noise
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fluctuationsin afairly steady current would produce fluctuating intervals and a lossof
registry between dfferent rasters after a short time because of acaimulated dfferences,
rather than an appearance of missng spikes and doubled or even quadrupled interspike
intervals. These y-cdl spike rasters cannd be due to a nealy constant input current
plateau plus noise.

time-aligned rasters

I

: L1 :

500 600 700 800
ms

Figure 9. Aligned spike rasters from figures 1a and 1c.

We ae left only with the third possbility, which then must be true (28). Given the size
of excitatory EPSP, the firing rates of the a-cdls at the time of recognition, and the
number of excitatory synapses impinging on ay-cdl, above tance overlaps of EPSP are
necessary to drive ay-cdl. The burst must be due to aimost periodic pulses of tota
synaptic input currents due to roughly synchronous, amost periodic spiking of the a and
[ cdlsthat drive thisy cdl. When an utteranceis not recognized, the synchronizaion of
o and 3 adivity must be & alower level. Missng spikes are now logicd in the presence
of noise fluctuations, for the rhythm of the transient coherent oscill ation in the a and 3
systemwill continue even though its amplitude fluctuates (see arow in Fig. 8c). Given
this observation, the entire question of how the system ‘computes’ must involve the
colledive synchronization of the subset of a and 3 neurons that drive ay-cdl.

In order for a and 3 neurons to fire synchronously for more than one spike, their
interspike intervals must be similar; therefore, the net input current to the two neurons
must also be similar. Thisimmediately suggests looking for crossngs of the inputs from
areaA, asin Figure 7, and thisin turn leads to reasoning that completes an understanding
of the principles of operation of the system, including time-warp invariance
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