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Serial Concatenation of Interleaved Codes:
Performance Analysis, Design, and

Iterative Decoding
S. Benedetto,a D. Divsalar,b G. Montorsi,a and F. Pollarab

A serially concatenated code with an interleaver consists of the cascade of an
outer code, an interleaver permuting the outer codewords’ bits, and an inner code
whose input words are the permuted outer codewords. The construction can be
generalized to h cascaded codes separated by h − 1 interleavers. We obtain upper
bounds to the average maximum-likelihood bit-error probability of serially con-
catenated block and convolutional coding schemes. Then, we derive some design
guidelines for the outer and inner codes that maximize the interleaver gain and the
asymptotic slope of the error probability curves. Finally, we propose a new, low-
complexity iterative decoding algorithm that yields performance close to maximum-
likelihood decoding. Throughout the article, extensive comparisons with parallel
concatenated convolutional codes, known as “turbo codes,” are performed, showing
that the new schemes offer superior performance.

I. Introduction

In his goal to find a class of codes whose probability of error decreased exponentially at rates less than
capacity, while decoding complexity increased only algebraically, David Forney [1] arrived at a solution
consisting of the multilevel coding structure known as concatenated code. It consists of the cascade
of an inner code and an outer code, which, in Forney’s approach, would be a relatively short inner
code (typically, a convolutional code) admitting simple maximum-likelihood decoding, and a long high-
rate algebraic nonbinary Reed–Solomon outer code equipped with a powerful algebraic error-correction
algorithm, possibly using reliability information from the inner decoder.

Initially motivated only by theoretical research interests, concatenated codes have since then evolved
as a standard for those applications where very high coding gains are needed, such as space and deep-
space applications among many others. Alternative solutions for concatenation have also been studied,
such as using a trellis-coded modulation scheme as an inner code [2] or concatenating two convolutional
codes [3]. In the latter case, the inner Viterbi decoder employs a soft-output decoding algorithm to
provide soft-input decisions to the outer Viterbi decoder. An interleaver was also proposed between the
two encoders to separate bursts of errors produced by the inner decoder.
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We find then, in a “classical” concatenated coding scheme, the main ingredients that formed the basis
for the invention of “turbo codes” [4], namely, two or more constituent codes (CCs) and an interleaver.
The novelty of turbo codes, however, consists of the way they use the interleaver, which is embedded
into the code structure to form an overall concatenated code with a very large block length, and in the
proposal of a parallel concatenation to achieve a higher rate for given rates of CCs. The latter advantage is
obtained by using systematic CCs and not transmitting the information bits entering the second encoder.
In the following, we will refer to turbo codes as parallel concatenated convolutional codes (PCCCs). The
so-obtained codes have been shown to yield very high coding gains at bit-error probabilities around 10−5

through 10−7; in particular, low bit-error probabilities can be obtained at rates well beyond the channel
cutoff rate, which had been regarded for a long time as the “practical” capacity. Quite remarkably, this
performance can be achieved by a relatively simple iterative decoding technique whose computational
complexity is comparable to that needed to decode the two CCs.

In this article, we consider the serial concatenation of interleaved codes or serially concatenated codes
(SCCs), called serially concatenated block codes (SCBCs) or serially concatenated convolutional codes
(SCCCs) according to the nature of the CCs. For this class of codes, we obtain analytical upper bounds
to the performance of a maximum-likelihood (ML) decoder, propose design guidelines leading to the
optimal choice of CCs for maximizing the interleaver gain and the asymptotic code performance, and
present a new iterative decoding algorithm yielding results close to maximum-likelihood decoding with
limited complexity. Extensive comparisons with turbo codes of the same complexity and decoding delay
are performed.

With these results, we think that SCCC can be considered a valid, in some cases superior, alternative
to turbo codes.

In Section II, we derive analytical upper bounds to the bit-error probability of both SCBCs and
SCCCs, using the concept of a “uniform interleaver” that decouples the output of the outer encoder
from the input of the inner encoder. In Section III, we propose design rules for SCCCs through an
asymptotic approximation of the bit-error probability bound, assuming long interleavers or large signal-
to-noise ratios. In Section IV, we compare serial and parallel concatenated codes. Section V is devoted
to the presentation of a new iterative decoding algorithm and to its application to some significant codes.
Examples of SCCCs for deep-space communications are presented in Section VI.

II. Analytical Bounds to the Performance of Serially Concatenated Codes

For simplicity of presentation, we begin by considering serially concatenated block codes (SCBCs).

A. Serially Concatenated Block Codes

The scheme of two serially concatenated block codes is shown in Fig. 1. It is composed of two cascaded
CCs, the outer (N, k) code Co with rate Roc = k/N and the inner (n,N) code Ci with rate Ric = N/n,
linked by an interleaver of length N . The overall SCBC is then an (n, k) code, and we will refer to it
as the (n, k,N) code CS , including also the interleaver length. In the following, we will derive an upper
bound to the ML performance of the overall code CS . We assume that the CCs are linear, so that the
SCBC also is linear and the uniform error property applies, i.e., the bit-error probability can be evaluated
assuming that the all-zero codeword has been transmitted.

As in [5,6], a crucial step in the analysis consists of replacing the actual interleaver that performs a
permutation of the N input bits with an abstract interleaver called a uniform interleaver, defined as a
probabilistic device that maps a given input word of weight l into all distinct (N

l
) permutations of it

with equal probability p = 1/ (N
l
) (see Fig. 2), so that the output word of the outer code and the input

word of the inner code share the same weight. Use of the uniform interleaver permits the computation
of the “average” performance of SCBCs, intended as the expectation of the performance of SCBCs using
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Fig. 1.  Serially concatenated (n , k , N ) block code.
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the same CCs, taken over the ensemble of all interleavers of a given length. A theorem proved in [6]
guarantees the meaningfulness of the average performance, in the sense that there will always be, for each
value of the signal-to-noise ratio, at least one particular interleaver yielding performance better than or
equal to those of the uniform interleaver.

Let us define the input–output weight enumerating function (IOWEF) of the SCBC CS as

ACS (W,H) =
∑
w,h

ACSw,hW
wHh (1)

where ACSw,h is the number of codewords of the SCBC with weight h associated with an input word of
weight w. We also define the conditional weight enumerating function (CWEF) ACS (w,H) of the SCBC
as the weight distribution of codewords of the SCBC that have input word weight w. It is related to the
IOWEF by

ACS (w,H) =
1
w!
∂wACS (W,H)

∂Ww

∣∣∣∣
W=0

(2)

With knowledge of the CWEF, an upper bound to the bit-error probability of the SCBC can be obtained
in the form [6]

Pb(e) ≤
k∑

w=1

w

k
ACS (w,H)|H=e−RcEb/N0 (3)

where Rc = k/n is the rate of CS , and Eb/N0 is the signal-to-noise ratio per bit.
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The problem thus consists in the evaluation of the CWEF of the SCBC from the knowledge of the
CWEFs of the outer and inner codes, which we call ACo(w,L) and ACi(l,H). To do this, we exploit
the properties of the uniform interleaver, which transforms a codeword of weight l at the output of the
outer encoder into all its distinct (N

l
) permutations. As a consequence, each codeword of the outer code

Co of weight l, through the action of the uniform interleaver, enters the inner encoder generating (N
l
)

codewords of the inner code Ci. Thus, the number ACSw,h of codewords of the SCBC of weight h associated
with an input word of weight w is given by

ACSw,h =
N∑
l=0

ACow,l ×ACil,h(
N
l

) (4)

From Eq. (4), we derive the expressions of the IOWEF and CWEF of the SCBC:

ACS (w,H) =
N∑
l=0

ACow,l ×ACi(l,H)(
N
l

) (5)

ACS (W,H) =
N∑
l=0

ACo(W, l)×ACi(l,H)(
N
l

) (6)

where ACo(W, l) is the conditional weight distribution of the input words that generate codewords of the
outer code of weight l.

Example 1. Consider the (7,3) SCBC code obtained by concatenating the (4,3) parity check code to
a (7,4) Hamming code through an interleaver of length N = 4. The IOWEF ACo(W,L) and ACi(L,H)
of the inner and outer codes are

ACo(W,L) = 1 +W (3L2) +W 2(3L2) +W 3(L4)

ACi(L,H) = 1 + L(3H3 +H4) + L2(3H3 + 3H4) + L3(H3 + 3H4) + L4H7

so that

ACo(W, 0) = 1

ACo(W, 1) = 0

ACo(W, 2) = 3W + 3W 2

ACo(W, 3) = 0

ACo(W, 4) = W 3

and
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ACi(0, H) = 1

ACi(1, H) = 3H3 +H4

ACi(2, H) = 3H3 + 3H4

ACi(3, H) = H3 + 3H4

ACi(4, H) = H7

Through Eq. (6), we then obtain

ACS (W,H) =
4∑
l=0

ACo(W, l)×ACi(l,H)(
N
l

)

=
1× 1

1
+

0× (3H3 +H4)
4

+
(3W + 3W 2)× (3H3 + 3H4)

6
+

0× (H3 + 3H4)
4

+
W 3 ×H7

1

= 1 +W (1.5H3 + 1.5H4) +W 2(1.5H3 + 1.5H4) +W 3H7

The previous results of Eqs. (6) and (5) can be easily generalized to the case of an interleaver of length
N , which is an integer multiple of the length of the outer codewords. Denoting by AC

m
o (W,L) the IOWEF

of the new (N,mk) outer code, and similarly by AC
m
i (L,H) the IOWEF of the new (mn,N) inner code,

it is straightforward to obtain

AC
m
o (W,L) = [ACo(W,L)]m

AC
m
i (L,H) = [ACi(L,H)]m

 (7)

From the IOWEFs of Eq. (7), and through Eq. (2), we obtain the CWEFs AC
m
o (W, l) and AC

m
o (l,H) of

the new CCs and, finally, the IOWEF and CWEF of the new (n, k,mN) SCBC CmS :

AC
m
S (w,H) =

N∑
l=0

A
Cmo
w,l ×AC

m
i (l,H)(

N
l

) (8)

AC
m
S (W,H) =

N∑
l=0

AC
m
o (W, l)×ACmi (l,H)(

N
l

) (9)

Example 2. Consider again the CCs of Example 1, linked by an interleaver of length N = 4m, and
use Eqs. (8) and (3). The so-obtained upper bound to the bit-error probability is plotted in Fig. 3 for
various values of the integer m. The curves show the interleaver gain, defined as the factor by which
the bit-error probability is decreased with the interleaver length. Contrary to parallel concatenated block
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Fig. 3.  Analytical bounds for the SCBC of Example 2 (SCBC1).
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codes [6], the curves do not exhibit the interleaver gain saturation. Rather, the bit-error probability seems
to decrease regularly with m as m−1. We will explain this behavior in Section III.

B. Serially Concatenated Convolutional Codes

The structure of a serially concatenated convolutional code (SCCC) is shown in Fig. 4. It refers to the
case of two convolutional CCs, the outer code Co with rate Roc = k/p, and the inner code Ci with rate
Ric = p/n, joined by an interleaver of length N bits, generating an SCCC CS with rate Rc = k/n. Note
that N must be an integer multiple of p.1 We assume, as before, that the convolutional CCs are linear,
so that the SCCC is linear as well, and the uniform error property applies.

The exact analysis of this scheme can be performed by appropriate modifications of the analysis de-
scribed in [6] or [13] for PCCCs. It requires the use of a hypertrellis having as hyperstates pairs of
states of outer and inner codes. The hyperstates Sij and Slm are joined by a hyperbranch that con-
sists of all pairs of paths with length N/p that join states si and sl of the inner code and states sj and
sm of the outer code, respectively. Each hyperbranch is thus an equivalent SCBC labeled with an IOWEF

OUTER
CODE

RATE = 1/2

INNER
CODE

RATE = 2/3

INTERLEAVER
LENGTH = N

RATE 1/3 SCCC

Fig. 4.  Serially concatenated (n , k , N ) convolutional code.

1 Actually, this constraint is not necessary. We can choose in fact inner and outer codes of any rates Ric = ki/ni and
Roc = ko/no, constraining the interleaver to be an integer multiple of the minimum common multiple of no and ki, i.e.,
N = K · mcm(no, ki). This generalization, though, leads to more complicated expressions and is not considered in the
following.
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that can be evaluated as explained in the previous subsection. From the hypertrellis, the upper bound
to the bit-error probability can be obtained through the standard transfer function technique employed
for convolutional codes [7]. As proved in [6], when the length of the interleaver is significantly greater
than the constraint length of the CCs, an accurate approximation of the exact upper bound consists in
retaining only the branch of the hypertrellis joining the hyperstates S00 and S00. In the following, we
will always use this approximation.

Example 3. Consider a rate 1/3 SCCC formed by an outer four-state convolutional code with rate
1/2 and an inner four-state convolutional code with rate 2/3, joined by a uniform interleaver of length
N = 200, 400, 600, 800, 1000, and 2000. Both codes are systematic and recursive, and the generator
matrices are given in the first and third rows of Table 1. Using the previously outlined analysis, we have
obtained the bit-error probability bounds shown in Fig. 5. The performance shows a very significant
interleaver gain, i.e., lower values of the bit-error probability for higher values of N .

Table 1. Generating matrices for the
constituent convolutional codes.

Code description G(D)

Rate 1/2 recursive
[

1, 1+D2

1+D+D2

]
Rate 1/2 nonrecursive [ 1 +D +D2, 1 +D2 ]

Rate 2/3 recursive

[
1, 0, 1+D2

1+D+D2

0, 1, 1+D

1+D+D2

]

Rate 2/3 nonrecursive

[
1 +D, D, 1
1 +D, 1, 1 +D

]
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Fig. 5.  Analytical bounds for the SCCC of Example 3 (SCCC1).

E b /N 0

P
 b

 (e
 )

5 6 7 8 9 10

INTERLEAVER LENGTH

200
400
600
800
1000
2000

7



III. Design of Serially Concatenated Codes

In the previous section, we presented an analytical bounding technique to find the ML performance of
SCBC and SCCC. For practical applications, SCCCs are to be preferred to SCBCs. One reason is that
maximum a posteriori algorithms are less complex for convolutional than for block codes; a second is that
the interleaver gain can be greater for convolutional CCs, provided they are suitably designed. Hence,
we deal mainly with the design of SCCCs, extending our conclusions to SCBCs when appropriate.

Consider the SCCC depicted in Fig. 4. Its performance can be approximated by that of an equivalent
block code whose IOWEF labels the branch of the hypertrellis joining the zero states of the outer and
inner codes. Denoting by ACS (w,H) the CWEF of this equivalent block code, we can rewrite the upper
bound, Eq. (3), as2

Pb(e) ≤
NRoc∑
w=wom

w

NRoc
ACS (w,H)|H=e−RcEb/N0 =

N/Ric∑
h=hm

NRoc∑
w=wom

w

NRoc
ACSw,he

−hRcEb/N0 (10)

where wom is the minimum weight of an input sequence generating an error event of the outer code, and
hm is the minimum weight3 of the codewords of CS . By “error event of a convolutional code” we mean
a sequence diverging from the zero state at time zero and remerging into the zero state at some discrete
time j > 0. For constituent block codes, an error event is simply a codeword.

The coefficients ACSw,h of the equivalent block code can be obtained from Eq. (4) once the quantities
ACow,l and ACil,h of the CCs are known. To evaluate them, consider a rate R = p/n convolutional code
C with memory ν, and its equivalent (N/R,N − pν) block code whose codewords are all sequences of
length N/R bits of the convolutional code starting from and ending at the zero state. By definition, the
codewords of the equivalent block code are concatenations of error events of the convolutional codes. Let

A(l,H, j) =
∑
h

Al,h,jH
h (11)

be the weight enumerating function of sequences of the convolutional code that concatenate j error events
with total input weight l (see Fig. 6), where Al,h,j is the number of sequences of weight h, input weight l,
and number of concatenated error events j. For N much larger than the memory of the convolutional
code, the coefficient ACl,h of the equivalent block code can be approximated by4

ACl,h ∼
nM∑
j=1

(
N/p

j

)
Al,h,j (12)

2 In the following, a subscript m will denote minimum, and a subscript M will denote maximum.

3 Since the input sequences of the inner code are not unconstrained independent identically distributed (i.i.d.) binary
sequences but, instead, codewords of the outer code, hm can be greater than the inner code free distance, dif .

4 This assumption permits neglecting the length of error events compared to N , which also assumes that the number of

ways j input sequences producing j error events can be arranged in a register of length N is
(
N/p
j

)
]. The ratio N/p

derives from the fact that the code has rate p/n, and thus N bits corresponds to N/p input words or, equivalently, trellis
steps.
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Fig. 6.  A code sequence in A l ,h ,j .
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where nM , the largest number of error events concatenated in a codeword of weight h and generated by
a weight l input sequence, is a function of h and l that depends on the encoder, as we will see later.

Let us return now to the block code equivalent to the SCCC. Using the previous result of Eq. (12)
with j = ni for the inner code, and the analogous one, j = no, for the outer code,5

ACow,l ∼
noM∑
no=1

(
N/p

no

)
Aow,l,no (13)

and substituting them into Eq. (4), we obtain the coefficient ACSw,h of the serially concatenated block code
equivalent to the SCCC in the form

ACSw,h ∼
N∑
l=do

f

noM∑
no=1

niM∑
ni=1

(
N/p
no

)(
N/p
ni

)
(
N
l

) Aow,l,noA
i
l,h,ni (14)

where dof is the free distance of the outer code. By free distance df we mean the minimum Hamming
weight of error events for convolutional CCs and the minimum Hamming weight of codewords for block
CCs.

We are interested in large interleaver lengths and thus use for the binomial coefficient the asymptotic
approximation

(
N

n

)
∼ Nn

n!

Substitution of this approximation in Eq. (14) yields

ACSw,h ∼
N∑
l=do

f

noM∑
no=1

niM∑
ni=1

Nno+ni−l l!
pno+nino!ni!

Aow,l,noA
i
l,h,ni (15)

Finally, substituting Eq. (15) into Eq. (10) gives the bit-error probability bound in the form

5 In the following, superscripts o and i will refer to quantities pertaining to outer and inner code, respectively.
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Pb(e)
∼
≤

N/Ric∑
h=hm

e−hRcEb/N0

NRoc∑
w=wom

N∑
l=do

f

noM∑
no=1

niM∑
ni=1

Nno+ni−l−1 l!
pno+ni−1no!ni!

w

k
Aow,l,noA

i
l,h,ni (16)

Using Expression (16) as the the starting point, we will obtain some important design considerations.
The bound, Expression (16), to the bit-error probability is obtained by adding terms of the first summation
with respect to the SCCC weights h. The coefficients of the exponentials in h depend, among other
parameters, on N . For large N , and for a given h, the dominant coefficient of the exponentials in h is
the one for which the exponent of N is maximum. Define this maximum exponent as

α(h) 4= max
w,l
{no + ni − l − 1} (17)

Evaluating α(h) in general is not possible without specifying the CCs. Thus, we will consider two
important cases for which general expressions can be found.

A. The Exponent of N for the Minimum Weight

For large values of Eb/N0, the performance of the SCC is dominated by the first term of the summation
in h, corresponding to the minimum value h = hm. Remembering that, by definition, niM and noM are
the maximum number of concatenated error events in codewords of the inner and outer code of weights
hm and l, respectively, the following inequalities hold true:

niM ≤
⌊
hm
dif

⌋
(18)

noM ≤
⌊
l

dof

⌋
(19)

and

α(hm) ≤ max
l

{⌊
hm
dif

⌋
+

⌊
l

dof

⌋
− l − 1

}
=

⌊
hm
dif

⌋
+

⌊
lm(hm)
dof

⌋
− lm(hm)− 1 (20)

where lm(hm) is the minimum weight l of codewords of the outer code yielding a codeword of weight hm
of the inner code, and bxc means “integer part of x.” In most cases, lm(hm) < 2dof and hm < 2dif , so that
niM = noM = 1 and Eq. (20) becomes6

α(hm) = 1− lm(hm) ≤ 1− dof (21)

The result, Eq. (21), shows that the exponent of N corresponding to the minimum weight of SCCC
codewords is always negative for dof ≥ 2, thus yielding an interleaver gain at high Eb/N0. Substitution of
the exponent α(hm) into Expression (16) truncated to the first term of the summation in h yields

6 This will be seen in the examples that follow and corresponds to the most favorable situation.
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lim
Eb
N0
→∞

Pb(e)
∼
≤ BmN1−dof exp

(−hmRcEb
N0

)
(22)

where the constant Bm is

Bm =
Ailm(hm),hm,1

[lm(hm)]!

kp

∑
w∈Wm

wAow,lm(hm),1

and Wm is the set of input weights w that generates codewords of the outer code with weight lm(hm).

Expression (22) suggests the following conclusions:

(1) For the values of Eb/N0 and N where the SCCC performance is dominated by its free
distance dCSf = hm, increasing the interleaver length yields a gain in performance.

(2) To increase the interleaver gain, one should choose an outer code with a large dof .

(3) To improve the performance with Eb/N0, one should choose an inner and outer code
combination such that hm is large.

These conclusions do not depend on the structure of the CCs, and thus they apply for both recursive and
nonrecursive encoders.

However, the curves of Fig. 3, showing the performance of the various SCBCs of Example 1 with
increasing interleaver length, also show a different phenomenon: For a given Eb/N0, there seems to be a
minimum value of N that forces the bound to diverge. In other words, there seem to be coefficients of
the exponents in h, for h > hm, that increase with N . To investigate this phenomenon, we will evaluate
the largest exponent of N , defined as

αM
4= max

h
{α(h)} = max

w,l,h
{no + ni − l − 1} (23)

This exponent will permit one to find the dominant contribution to the bit-error probability for N →∞.

B. The Maximum Exponent of N

We need to treat the cases of nonrecursive and recursive inner encoders separately. As we will see,
nonrecursive encoders and block encoders show the same behavior.

1. Block and Nonrecursive Convolutional Inner Encoders. Consider the inner code and its
impact on the exponent of N in Eq. (23). For a nonrecursive inner encoder, we have niM = l. In fact,
every input sequence with weight 1 generates a finite-weight error event, so that an input sequence with
weight l will generate, at most, l error events corresponding to the concatenation of l error events of input
weight 1. Since the uniform interleaver generates all possible permutations of its input sequences, this
event will certainly occur. Thus, from Eq. (23) we have

αM = noM − 1 ≥ 0

and interleaving gain is not allowed. This conclusion holds true for both SCCC employing a nonrecursive
inner encoder and for all SCBCs, since block codes have codewords corresponding to input words with
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weight equal to 1. For those SCCs, we always have, for some h, coefficients of the exponential in h of
Expression (16) that increase with N , and this explains the divergence of the bound arising, for each
Eb/N0, when the coefficients increasing with N become dominant.

2. Recursive Inner Encoders. In [8], we proved that, for recursive convolutional encoders, the
minimum weight of input sequences generating error events is 2. As a consequence, an input sequence of
weight l can generate at most b l2c error events.

Assuming that the inner encoder of the SCCC is recursive, the maximum exponent of N in Eq. (23)
becomes

αM = max
w,l

{
noM +

⌊
l

2

⌋
− l − 1

}
= max

w,l

{
noM −

⌊
l + 1

2

⌋
− 1
}

(24)

The maximization involves l and w, since noM depends on both quantities. In fact, remembering the
definition of noM as the maximum number of concatenated error events of codewords of the outer code
with weight l generated by input words of weight w, it is straightforward, as in Eq. (19), to obtain

noM ≤
⌊
l

dof

⌋
(25)

Substituting now the last inequality, Eq. (25), into Eq. (24) yields

αM ≤ max
l

{⌊
l

dof

⌋
−
⌊
l + 1

2

⌋
− 1

}
(26)

To perform the maximization of the right-hand side (RHS) of Expression (26), consider first the case of

l = qdof

where q is an integer, so that

αM ≤ max
q

{
q −

⌊
qdof + 1

2

⌋
− 1
}

(27)

The RHS of Expression (27) is maximized, for dof ≥ 2, by choosing q = 1. On the other hand, for

qdof ≤ l < (q + 1)dof

the most favorable case is l = qdof , which leads us again to the previously discussed situation. Thus, the
maximization requires l = dof . For this value, on the other hand, we have, from Eq. (25), noM ≤ 1, and
the inequality becomes an equality if w ∈ Wf , where Wf is the set of input weights w that generates
codewords of the outer code with weight l = dof . In conclusion, the largest exponent of n is given by

αM = −
⌊
dof + 1

2

⌋
(28)
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The value of αM in Eq. (28) shows that the exponents of N in Expression (16) are always negative
integers. Thus, for all h, the coefficients of the exponents in h decrease with N , and we always have an
interleaver gain.

As in [6], denoting by dif,eff the minimum weight of codewords of the inner code generated by weight-2
input sequences, we obtain a different weight h(αM ) for even and odd values of dof . For even dof , the
weight h(αM ) associated to the highest exponent of N is given by

h(αM ) =
dofd

i
f,eff

2

since it is the weight of an inner codeword that concatenates dof/2 error events with weight dif,eff .
Substituting the exponent αM into Expression (16), approximated by only the term of the summation in
h corresponding to h = h(αM ), yields

lim
N→∞

Pb(e)
∼
≤ BevenNdof/2 exp

[
−
dofd

i
f,eff

2
Rc

Eb
N0

]
(29a)

where

Beven =
dof !

kpd
o
f
/2(dof/2)!

∑
w∈Wf

wAow,do
f
,1 ≤ wM,fN

o
f

dof !

kpd
o
f
/2(dof/2)!

(29b)

In Eq. (29b), wM,f is the maximum input weight yielding outer codewords with weight equal to dof , and
No
f is the number of such codewords.

For dof odd, the value of h(αM ) is given by

h(αM ) =
(dof − 3)dif,eff

2
+ h(3)

m (30)

where h(3)
m is the minimum weight of sequences of the inner code generated by a weight-3 input sequence.

In this case, in fact, we have

niM =
dof − 1

2

concatenated error events, of which niM−1 are generated by weight-2 input sequences and one is generated
by a weight-3 input sequence.

Thus, substituting the exponent αM into Expression (16) approximated by keeping only the term of
the summation in h corresponding to h = h(αM ) yields

lim
N→∞

Pb(e)
∼
≤ BoddN−([dof+1]/2) exp

{
−
[

(dof − 3)dif,eff
2

+ h(3)
m

]
Rc

Eb
N0

}
(31)
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where

Bodd =
dof !

kp(do
f
−1)/2[(dof − 3)/2]!

∑
w∈Wf

wAow,do
f
,1 ≤ wM,fN

o
f

dof !

kp(do
f
−1)/2[(dof − 3)/2]!

(32)

In cases of dof both even and odd, we can draw from Expressions (29) and (31) a few important design
considerations, as follows:

(1) In contrast with the case of block codes and nonrecursive convolutional inner encoders,
the use of a recursive convolutional inner encoder always yields an interleaver gain. As a
consequence, the first design rule states that the inner encoder must be a convolutional
recursive encoder.

(2) The coefficient h(αM ) that multiplies the signal-to-noise ratio Eb/N0 in Expression (16)
increases for increasing values of dif,eff . Thus, we deduce that the effective free distance
of the inner code must be maximized. Both this and the previous design rule also had been
stated for PCCCs [8].7 As a consequence, the recursive convolutional encoders optimized
for use in PCCCs (see the tables in [8] and [9]) can be employed altogether as inner CC in
SCCCs. When dof is odd, for special cases it is possible to increase h(αM ) and hm further
by choosing the feedback polynomial of the inner code to have a factor (1 +D), yielding
h

(3)
m =∞. This is discussed for a few examples in Section VI. Note that there are other

feedback polynomials such as (1+D+D2 +D3 +D4) or (1+D+D2 +D3 +D4 +D5 +D6)
yielding h(3)

m =∞.

(3) The interleaver gain is equal to N−(dof/2) for even values of dof and to N−[(dof+1)/2] for
odd values of dof . As a consequence, we should choose, compatibly with the desired rate
Rc of the SCCC, an outer code with a large and, possibly, odd value of the free distance.

(4) As to other outer code parameters, No
f and wM,f should be minimized. In other words,

we should have the minimum number of input sequences generating free distance error
events of the outer code, and their input weights should be minimized. Since nonrecursive
encoders have error events with w = 1 and, in general, less input errors associated with
error events at free distance [10], it can be convenient to choose as an outer code a non-
recursive encoder with minimum No

f and wM,f . Conventional nonrecursive convolutional
codes found in books (see, for example, [11]) are appropriate.

C. Examples Confirming the Design Rules

To confirm the design rules obtained asymptotically, i.e., for large signal-to-noise ratios and large
interleaver lengths N , we evaluate the upper bound, Expression (16), to the bit-error probability for
several block and convolutional SCCs with different interleaver lengths, and compare their performances
with those predicted by the design guidelines.

1. Serially Concatenated Block Codes. We consider three different SCBCs obtained, as follows:
The first is the (7m, 3m,N) SCBC described in Example 2; the second is a (15m, 4m,N) SCBC using as
outer code a (5, 4) parity-check code and as inner code a (15, 5) Bose–Chaudhuri–Hocquenghem (BCH)
code; and the third is a (15m, 4m,N) SCBC using as outer code a (7, 4) Hamming code and as inner
code a (15, 7) BCH code. Note that the second and third SCBCs have the same rate, 4/15. The outer,
inner, and SCBC code parameters introduced in the design analysis of Section III are listed in Table 2.
In Figs. 3, 7, and 8, we plot the bit-error probability bounds for SCBCs 1,2, and 3 of Table 2.

Code SCBC1 has dof = 2; thus, from Eq. (21), we expect an interleaver gain going as N−1. This is
confirmed by the curves of Fig. 3, which, for a fixed and sufficiently large signal-to-noise ratio, show a

7 For PCCCs, however, both CCs had to comply with those design rules.
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Table 2. Design parameters of CCs and SCBCs for three
serially concatenated block codes.

Outer code Inner code SCBC
Code

Code type wom dof Code type wim dif dif,eff hm α(hm)

SCBC1 Parity check (4,3) 1 2 Hamming (7,4) 1 3 3 3 −1

SCBC2 Parity check (5,4) 1 2 BCH (15,5) 1 7 7 7 −1

SCBC3 Hamming (7,4) 1 3 BCH (15,7) 1 5 5 5 −2
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Fig. 7.  Analytical bounds for SCBC2.
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decrease in Pb(e) of a factor of 10 when N passes from 4 to 40, from 40 to 400, and from 400 to 4000.
Moreover, from Expression (22), we expect, in each curve for lnPb(e), a slope with Eb/N0 as −hmRc.
From Table 2, we know that Rc = 3/7, hm = 3, so that Pb(e) should decrease by a factor of ehmRc = 3.6
when the signal-to-noise ratio increases by 1 (not in dB). This behavior fully agrees with the curves of
Fig. 3. Finally, the curves of Fig. 3 show a divergence of the bound at lower Eb/N0 for increasing N . This
is due to coefficients of terms with h > hm in Expression (16) that increase with N and whose influence
becomes more important for larger N .

Code SCBC2 has dof = 2; thus, from Eq. (21), we expect the same interleaver gain as for SCBC1,
i.e., N−1. This is confirmed by the curves of Fig. 7. This code, however, has a larger minimum distance
hm = 7, and a rate Rc = 4/15. Thus, we expect a steeper descent of Pb(e) with Eb/N0. More precisely, we
expect a decrease by a factor of 6.5 when the signal-to-noise ratio increases by 1. This, too, is confirmed
by the curves, which also show the bound divergence predicted in the analysis of Section III.

Code SCBC3 has dof = 3; thus, from Eq. (21), we expect a larger interleaver gain than for SCBC1
and SCBC2, i.e., N−2. This is confirmed by the curves of Fig. 8, which, for a fixed and sufficiently large
signal-to-noise ratio, show a decrease in Pb(e) of a factor of 100 when N passes from 7 to 70, from 70
to 700, and from 700 to 7000. This code has a minimum distance hm = 5 and a rate Rc = 4/15, which
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Fig. 8.  Analytical bounds for SCBC3.
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means a descent of Pb(e) with Eb/N0 by a factor of 3.8 when the signal-to-noise ratio increases by 1. This,
too, is confirmed by the curves. As to the bound divergence, we notice a slightly different behavior with
respect to previous cases. The curve with N = 7000, in fact, denotes a strong influence of coefficients
increasing with N for Eb/N0 lower than 7.

2. Serially Concatenated Convolutional Codes. We consider four different SCCCs obtained
as follows: The first, SCCC1, is a (3,1,N) SCCC (the same as Example 3), using as outer code a four-
state (2,1) recursive, systematic convolutional encoder and as inner code a four-state (3,2) recursive,
systematic convolutional encoder. The second, SCCC2, is a (3,1,N) SCCC, using as outer code the same
four-state (2,1) recursive, systematic convolutional encoder as SCCC1, and as inner code a four-state (3,2)
nonrecursive convolutional encoder. The third, SCCC3, is a (3,1,N) SCCC (the same as Example 3),
using as outer code a four-state (2,1) nonrecursive, convolutional encoder, and as inner code the same
four-state (3,2) recursive, systematic convolutional encoder as SCCC1. Finally, the fourth, SCCC4, is a
(6,2,N) SCCC using as outer code a four-state (3,2) nonrecursive convolutional encoder, and as inner code
a four-state (6,3) recursive, systematic convolutional encoder obtained by using three times the four-state
(2,1) recursive, systematic convolutional encoders in Table 1.

The outer, inner, and SCCC code parameters introduced in the design analysis in Section III are listed
in Table 3. In this table, the CCs are identified through the descriptions of Table 1. In Figs. 5, 9, 10, and
11, we plot the bit-error probability bounds for SCCCs 1,2,3, and 4 of Table 3, with input information
block lengths RocN = 100, 200, 300, 400, 500, and 1000.

Consider first the SCCCs employing as inner CCs recursive, convolutional encoders as suggested in
Section III. They are SCCC1, SCCC3, and SCCC4. Code SCCC1 has dof = 5; thus, from Expression (31),
we expect an interleaver gain behaving as N−3. This is fully confirmed by the curves of Fig. 5, which,
for a fixed and sufficiently large signal-to-noise ratio, show a decrease in Pb(e) of a factor of 1000 when
N passes from 200 to 2000. For an even more accurate confirmation, one can compare the interleaver
gain for every pair of curves in the figure. Moreover, from Expression (31), we expect in each curve for
lnPb(e) a slope with Eb/N0 as −h(αM )Rc. From Table 3, we know that Rc = 1/3 and h(αM ) = 7, so
that Pb(e) should decrease by a factor of 10.3 when the signal-to-noise ratio increases by 1. This behavior
fully agrees with the curves of Fig. 5. Finally, the curves of Fig. 5 do not show a divergence of the bound at
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Table 3. Design parameters of CCs and SCCCs for four SCCCs.

Outer code Inner code SCCC
Code

Code type wom dof Code type wim dif dif,eff hm α(hm) h(αM ) αM

SCCC1 Rate 1/2 recursive 2 5 Rate 2/3 recursive 2 3 4 5 −4 7 −3

SCCC2 Rate 1/2 recursive 2 5 Rate 2/3 nonrecursive 1 3 4 5 −4 — —

SCCC3 Rate 1/2 nonrecursive 1 5 Rate 2/3 recursive 2 3 4 5 −4 7 −3

SCCC4 Rate 2/3 nonrecursive 1 3 Rate 1/2 recursive 2 5 6 5 −2 5 −2
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Fig. 9.  Analytical bounds for SCCC2.
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lower Eb/N0 for increasing N . This is due to the choice of a recursive encoder for the inner code, which
guarantees that all coefficients α(h) decrease with N .

Code SCCC3 differs from SCCC1 only in the choice of a nonrecursive outer encoder, which is a four-
state encoder (see Tables 1 and 3) with the same dof as for SCCC1, but with wom = 1 instead of wom = 2.
From the design conclusions, we expect a slightly better behavior from this SCCC. This is confirmed by
the performance curves of Fig. 10, which present the same interleaver gain and slope as those of SCCC1
but have a slightly lower Pb(e) (the curves for SCCC3 are translated versions of those of SCCC1 by
0.1 dB).

Code SCCC4 employs the same CCs as SCCC2 but reverses their order. It uses as outer code a rate
2/3 nonrecursive convolutional encoder, and as inner code a rate 1/2 recursive convolutional encoder. As
a consequence, it has a lower dof = 3 and a higher αM = −2. Thus, from Expression (31), we expect a
lower interleaver gain than for SCCC1 and SCCC3 as N−2. This is confirmed by the curves of Fig. 11,
which, for a fixed and sufficiently large signal-to-noise ratio, show a decrease in Pb(e) of a factor of 100
when N passes from 150 to 1500. As to the slope with Eb/N0, this code has the same −h(αM )Rc as
SCCC1 and SCCC3 and, thus, the same slope. On the whole, SCCC4 loses more than 2 dB in coding
gain with respect to SCCC3. This result confirms the design rule suggesting the choice of an outer code
with dof as large as possible.
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Fig. 10.  Analytical bounds for SCCC3.
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Fig. 11.  Analytical bounds for SCCC4.
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Finally, let us consider code SCCC2, which differs from SCCC1 in the choice of a nonrecursive inner
encoder, with the same parameters but with the crucial difference of wim = 1. Its bit-error probability
curves are shown in Fig. 9. They confirm the predictions of Section III. We see, in fact, that for low
signal-to-noise ratios, say below 3, no interleaver gain is obtained. This is because the performance is
dominated by the exponent h(αM ), whose coefficient increases with N . On the other hand, for larger
signal-to-noise ratios, where the dominant contribution to Pb(e) is the exponent with the lowest value of
hm, the interleaver gain makes its appearance. From Expression (22), we foresee a gain as N−4, meaning
four orders of magnitude for N passing from 100 to 1000. Curves in Fig. 9 show a smaller gain (slightly
higher than 1/1000), which is, on the other hand, rapidly increasing with Eb/N0.
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IV. Comparison Between Parallel and Serially Concatenated Codes

In this section, we will use the bit-error probability bounds previously derived to compare the perfor-
mance of parallel (turbo codes [6]) and serially concatenated block and convolutional codes.

A. Parallel and Serially Concatenated Block Codes

To obtain a fair comparison, we have chosen the following PCBC and SCBC: The PCBC has parameters
(11m, 3m,N) and employs two equal (7,3) systematic cyclic codes with generator g(D) = (1 +D)(1 +D
+D3); the SCBC, instead, is a (15m, 4m,N) SCCC obtained by the concatenation of the (7, 4) Hamming
code with a (15, 7) BCH code.

They have almost the same rates (RCS = 0.266 and RCP = 0.273), and have been compared choosing
the interleaver length in such a way that the decoding delay due to the interleaver, measured in terms of
input information bits, is the same. As an example, to obtain a delay equal to 12 input bits, we must
choose an interleaver length N = 12 for the PCBC and N = 12/RoC = 21 for the SCBC.

The results are shown in Fig. 12, where we plot the bit-error probability versus the signal-to-noise
ratio Eb/N0 for various input delays. The results show that, for low values of the delay, the performances
are almost the same. On the other hand, increasing the delay (and thus the interleaver length N) yields a
significant interleaver gain for the SCBC and almost no gain for the PCBC. The difference in performance
is 3 dB at Pb(e) = 10−6 in favor of the SCBC.
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Fig. 12.  Comparison of SCBC and PCBC with various interleaver
lengths chosen so as to yield the same input decoding delay.
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B. Parallel and Serially Concatenated Convolutional Codes

To obtain a fair comparison, we have chosen the following PCCC and SCCC: The PCCC is a rate 1/3
code obtained concatenating two equal rate 1/2, four-state systematic recursive convolutional codes with
a generator matrix as in the first row of Table 1. The SCBC is a rate 1/3 code using as an outer code the
same rate 1/2, four-state code as in the PCCC and, as an inner code, a rate 2/3, four-state systematic
recursive convolutional code with a generator matrix as in the third row of Table 1. Also, in this case,
the interleaver lengths have been chosen so as to yield the same decoding delay, due to the interleaver,
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in terms of input bits. The results are shown in Fig. 13, where we plot the bit-error probability versus
the signal-to-noise ratio Eb/N0 for various input delays.

The results show the great difference in the interleaver gain. In particular, the PCCC shows an
interleaver gain going as N−1, whereas the interleaver gain of the SCCC, as from Expression (31), goes
as N−(dof+1)/2 = N−3, since the free distance of the outer code is equal to 5, which is odd. This means,
for Pb(e) = 10−11, a gain of more than 2 dB in favor of the SCCC.

Previous comparisons have shown that serial concatenation is advantageous with respect to parallel
concatenation in terms of maximum-likelihood performance. For long interleaver lengths, this significant
result remains a theoretical one, as maximum-likelihood decoding is an almost impossible achievement.
For parallel concatenated codes (turbo codes), iterative decoding algorithms have been proposed that
yield performance close to optimum, with limited complexity. In the following section, we show that this
is also possible for serially concatenated codes and that the performance gain is maintained.
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Fig. 13.  Comparison of SCCC and PCCC with four-state CCs.
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V. Iterative Decoding of Serially Concatenated Codes

In Sections II and III, we have shown by examples and analytical findings that SCCCs can outperform
PCCCs when decoded using an ML algorithm. In practice, however, ML decoding of these codes with
large N is an almost impossible achievement. Thus, to acquire a practical significance, this theoretical
result needs the support of a decoding algorithm of the same order of complexity as turbo decoding, yet
retaining the performance advantages. In this section, we will present a new iterative algorithm whose
complexity is not significantly higher than that needed to separately decode the two CCs. Because of
their importance in applications, all examples will refer to SCCCs, although the decoding algorithm can
be applied to SCBCs as well. The core of the new decoding procedure consists of a maximum a posteriori
(MAP) decoding algorithm applied to the CCs. The functionality of the MAP decoder to be used for
SCCCs is sensibly different from those needed in the PCCC decoding algorithm, as we will show in the
following. To permit a continuous decoding of the received sequence, we will use a modified version of the
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Fig. 14.  Iterative decoding algorithm for serially concatenated convolutional codes:  (a) PCCC and (b) SCCC.

sliding-window MAP algorithm described in [12].8 A functional diagram of the new iterative decoding
algorithm for SCCCs is presented in Fig. 14, where we also show the algorithm that decodes turbo codes
in order to enlighten analogies as well as differences.

Let us explain how the algorithm works, according to the blocks of Fig. 14. The blocks labeled
“MAP” are drawn with two inputs and two outputs. The input labeled O represents the logarithm
of the probability density function (LPDF) of the unconstrained output symbols of the encoder, while
that labeled I represents the LPDF of unconstrained input symbols. Similarly, the outputs represent
the same quantities conditioned to the code constraint as they are evaluated by the MAP decoding
algorithm. Differently from the iterative decoding algorithm employed for turbo decoding, in which the
MAP algorithm only computes the LPDF of input symbols conditioned on the code constraint based on
the unconstrained LPDF of input symbols, we fully exploit here the potential of the MAP algorithm. It
can, in fact, update the LPDFs of both the input and output symbols based on the code constraints.

We assume that the pair (i, o) of symbols, labeling each branch of the code trellis, is independent at
the input of the MAP decoder, so that their joint LPDF is given by

LPDF (i, o) = LPDF (i) + LPDF (o)

During the first iteration of the SCCC algorithm, the “MAP inner code” block is fed with the de-
modulator soft output, consisting of the LPDF of symbols received from the channels, i.e., of the output
symbols of the inner encoder. The LPDF is processed by the first MAP decoder that computes the LPDF
relative to the input symbols conditioned on the inner code constraints. This information, from which
we subtract the unconstrained input LPDF to obtain the “extrinsic” information as is done for turbo

8 This has been generalized in S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “MAP Decoding Algorithms as
Building Blocks for Iterative Decoding of Concatenated Codes,” in preparation, 1996.
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decoding, is passed through the inverse interleaver9 (block labeled “π−1”). As the input symbols of the
inner code, after inverse interleaving, correspond to the output symbols of the outer code, they are sent to
the “MAP outer code” block in the upper entry, which corresponds to output symbols. The outer MAP
decoder, in turn, processes the LPDF of the unconstrained output symbols and computes the LPDF of
both output and input symbols based on the code constraints. The LPDF of the input symbols (the
MAP information) will be used in the final iteration to recover the information bits, whereas the LPDF
of output symbols, after subtraction and interleaving, is fed back to the MAP inner decoder to start the
second iteration.

A. Performance of the Decoding Algorithm

To show the performance of the SCCC decoded using the new algorithm, we have simulated a rate 1/3
SCCC employing two four-state recursive convolutional codes, the first (outer code) with rate 1/2 and
the second (inner code) with rate 2/3, joined by an interleaver of length N = 2048. Since the interleaver
operates on coded sequences produced by the outer rate 1/2 encoder, its length of 2048 bits corresponds
to a delay of 1024 information bits. The simulation results are shown as dashed curves in Fig. 15 in terms
of bit-error probability versus Eb/N0 for a number of iterations ranging from 1 to 7. The nice convergence
of the decoding algorithm is manifest.

In the figure, we also show (solid lines) the simulation results pertaining to a rate 1/3 PCCC formed by
two equal four-state rate 1/2 recursive convolutional constituent codes joined by an interleaver of length
N = 1024, which induces the same delay on the information bits, using the iterative turbo-decoding
algorithm and the same numbers of iterations. The comparison between the two sets of curves is striking,
as they show the large advantage of SCCC over PCCC in terms of interleaving gain. In fact, the change
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Fig. 15.  Comparison of simulated performance between two rate 1/3
serial and parallel concatenated convolutional codes.  The dashed-line
curves refer to code SCCC1 of Table 3; the solid-line curves refer to a
turbo code using two equal constituent codes (first row of Table 1).
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9 To simplify the description, we assume that the interleaver acts on symbols instead of bits. In the actual decoder, we deal
with bit LPDF and the interleaver.
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of slope that characterizes the error probability curves of turbo codes does not take place with SCCC,
or, at least, it appears more than one order of magnitude later. The gain in Eb/N0 is more than 0.65 dB
at Pb(e) = 10−4.

In Section III, we proved that, asymptotically, the best choice between outer and inner code rates
consists of an outer code with a free distance as large as possible. As a consequence, one should choose
as an outer code the more powerful code, and, consequently, the code with the lower rate.

This behavior does not hold for the iterative decoding algorithm working at low signal-to-noise ratios,
where the bootstrap effect coming from the inner code, which is the first to be decoded in the decoding
algorithm, requires one to reverse the choice of codes. This was already pointed out in the optimization
of the serial concatenation of convolutional codes without an interleaver in [3]. To give heuristic evidence
to this guess, we have simulated the decoding algorithm for two different rate 1/3 SCCCs. The first uses
code SCCC1 of Table 3. The second SCCC instead reverses the inner and outer encoders, i.e., it uses
as an outer code the four-state, rate 2/3 code of Table 1, third row, and as an inner code a rate 3/6
four-state code obtained by using three times the rate 1/2 code of Table 1, first row. The performances
are shown in Fig. 16, where the bit-error probability for the two SCCCs are plotted versus Eb/N0 for
different values of iterations of the decoding algorithm. It can be seen that the second SCCC, whose inner
code is more powerful, has better performance at a medium-high bit-error probability. However, when
the signal-to-noise ratio increases, the curves change slope and the first SCCC overtakes the second one,
as anticipated by the design considerations, because its outer code has a larger dof .

SCCC 2/3 + 3/6 N = 1536

SCCC 1/2 + 2/3 N = 2048

0.0 1.0

Fig. 16.  Simulated performance of two SCCCs.  The dashed-line curves refer to
code SCCC1 of Table 3; the solid-line curves refer to an outer code with rate 2/3
(third row of Table 1) and an inner code of rate 3/6 ( three times the code in the
first row of Table 1).
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VI. Examples of Serially Concatenated Codes for Deep-Space Communications

In this section, we propose simple examples of rate 1/3, 1/4, and 1/6 SCCCs that are constructed
using a rate 1/2, four-state nonrecursive convolutional code, with generator G0(D) = (1+D+D2, 1+D2)
having dof = 5 as an outer code, and a rate 2/3, 1/2, or 1/3, four-state recursive convolutional code as
an inner code. First we consider a rate 1/2 inner code. If we select the first code in Table 1, we obtain
h(αM ) = 11 using Eq. (30) and we find that hm = 7 (minimum distance). However, for SCCCs with odd
dof and low-complexity inner code, it may be possible to obtain larger h(αM ) and hm, if we choose an
inner encoder whose feedback polynomial contains (1 +D) as a factor. This choice produces a very large
output weight for odd input-weight sequences, thus yielding h(odd)

m =∞ and, in particular, h(3)
m =∞. As a

consequence, the design parameter h(αM ) cannot be obtained from Eq. (30) but must be computed using
h(αM ) = [(dof + 1)dif,eff ]/2 since the input sequence to the inner code now has an effective minimum
weight dof + 1. This may produce a larger value for h(αM ) and hm, still with an interleaver gain of
N−[(dof+1)/2].

Thus, we examine two such codes, G1(D) = (1, [(1 + D + D2)/(1 + D)]) and G2(D) =
(1, [(1 + D + D2)/(1 + D2)]), having (1 + D) as a factor in the feedback polynomial. For G1(D), we
obtained h(αM ) = 12 and hm = 8. For G2(D), we have h(αM ) = 15 and hm = 8. Both G1(D) and
G2(D), in serial concatenation with G0(D), were simulated using iterative decoding with an information
block of 16,384 bits and 12 iterations.. The code with G1(D) has shown slightly better performance
around a bit-error rate (BER) of 10−7 or higher. For example, at BER = 10−6, G1(D) is better than
G2(D) by 0.07 dB. Using transfer function bounds G2(D) results in better performance than does G1(D)
at higher signal-to-noise ratios (SNRs). At a very high SNR, the performances of both codes are almost
the same since hm is the same for both of them. Using the MAP decoder, G1(D) by itself performed bet-
ter than all rate 1/2, four-state codes at low SNRs. It is worthwhile exploring other differences between
G1(D) and G2(D). In [14], a parameter η was suggested as a quality criterion for a feedback convolutional
encoder. This parameter represents the “rate of dependency” of an output parity bit on input bits. Let
the output parity bit at time k be the modulo 2 sum of certain n(k) input bits, depending on the code
structure. Then η = lim

k→∞ [n(k)/k]. The parameter η for G1(D) is 1 (this is usually true if the feedback
polynomial is 1+D and the weight of the feedforward polynomial is odd), where for G2(D) the parameter
η is 0.5. Note that for the first code in Table 1 η is 2/3 and for nonrecursive convolutional codes η is 0.

The simulation performance of a rate 1/4 SCCC using G0(D) as an outer code and G1(D) as an inner
code is shown in Fig. 17. The simulation performance of a rate 1/4 PCCC using two four-state codes,
(1, [(1+D2)/(1+D+D2)], [(1+D2)/(1+D+D2)] and ([1+D2]/[1+D+D2]), is shown in the same figure
for comparison. For a rate 1/6 SCCC, we selected a rate 1/3 inner code that is shown in Fig. 18 with
the high values of h(αM ) = 21 and hm = 13 (the G2(D) code with parity repetition has h(αM ) = 24 but
hm = 10 and has shown poor performance at low SNRs). This rate 1/6 SCCC with two four-state codes
outperforms the rate 1/6 Cassini code (Reed–Solomon (255,223) as outer code and rate 1/6, 16,384-state
convolutional code as inner code) by 0.8 dB at BER = 10−6. For a rate 1/3 SCCC, we selected a rate
2/3 inner code shown in Fig. 18 with h(αM ) = 9 and hm = 6, which are the highest possible among all
rate 2/3, four-state codes. Simulation performance results for selected SCCCs are shown in Fig. 17 using
block log-MAP iterative decoding. In the simulations, the input block of 16,384 (delay in bits), S-random
interleaver, and 12 iterations were used. Better performance can be obtained with a higher number of
iterations.

For SCCCs with code rates higher than 1/3, the rate of the outer code should be increased. For
example, if we use a rate 3/4, four-state nonrecursive outer code with dof = 3 and the recursive rate 2/3,
four-state code in Table 1 (third row) as an inner code, then a rate 1/2 SCCC can be obtained. This
code with an input block of 16,383 bits and 12 iterations was simulated. A bit-error rate of 10−6 was
achieved at Eb/N0 = 1.05 dB.
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Fig. 18.  Rate 1/3 and 2/3 four-state encoders with feedback (1 + D ):  (a) 1/3 code and (b) 2/3 code.
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