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We can recover j from g(j) as follows : 

j, = s,j 

jk = jk+ 1 + gki mod 2 
which gives 

jn-1 = gnj + gLl 

jnm2 = g,j + gi-l + gi-2,***. 
Thus 

On the right side of p. 505, the fifth and sixth line from the 
bottom, the lower error exponent E- (R) is valid for the 1 
output and the upper error exponent i? (R) for the 0 output. 
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ik = ik’,k = 1,2,. . a, n - 1. Hence 

gl = ik + ikfl = g,i’, if k 5 n - 2. 

Furthermore, 

gni + gi+ = in-1 
while 

(2) 

gi’ + gz-, = i,‘-1 = gni + gj-l. (3) 

We have thus shown that, if we add together the first two columns 
of a 2”-level Gray code and copy the remaining n - 2 columns, 
the resulting n - 1 columns contain two identical parts. It 
remains to be proved that each half is a 2”-l-level Gray code. 
We denote the latter by G(i), 0 I i 5 2”-’ - 1. Then 

G,,-, = i,,-1, Gk = ik f ik+l, Oskrn-2. 

The previous are identical to the expressions (2) and (3). Thus 
the n - 1 columns do consist of two repetitions of 2”-r-level 
Gray code. Now if we combine the first two columns again, 
we reduce each 2”-‘-level Gray code into two 2n-2-level Gray 
codes, or, the complete array into four 2”-2-level Gray codes. 
This can continue until we have only m  columns, which would 
be 2n-m repetitions of 2”‘-level Gray code. We have thus derived 
the lemma. 
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Correction to “On the Error Probability for a Class of 
Binary Recursive Feedback Strategies” 

J. PIETER M. SCHALKWIJK AND KAREL A. POST 

In the above paperr, p. 499, (2) should have read 

pn+ de) 

r 
(1 - Yn+JP + Yn+lq 

(1 - Yn+1)[4J + (1 - dP1 + Yn+Iw - ah + aP1 
P,(e), 

= 

I 

for e > a, 

(1 - xl+& + Yn+lP 
(1 - Yn+J[%l + (1 - @I + Yn+1[(1 - a>s + aP1 

Pnw, 

I for 0 < a,. (2) 
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Abstrucf-Tbe general problem of estimating the a posieriori prob- 
abilities of the states and transitions of a Markov source observed 
through a discrete memoryless channel is considered. The decoding of 
linear block and convolutional codes to minimize symbol error prob- 
ability is shown to be a special case of this problem. An optimal decoding 
algorithm is derived. 

I. INTRODUCTION 
The Viterbi algorithm is a maximum-likelihood decoding 

method which minimizes the probability of word error for 
convolutional codes [l 1, [2]. The algorithm does not, however, 
necessarily minimize the probability of symbol (or bit) error. 
In this correspondence we derive an optimal decoding method 
for linear codes which minimizes the symbol error probability. 

We fhst tackle the more general problem of estimating the a 
posteriori probabilities (APP) of the states and transitions of a 
Markov source observed through a noisy discrete memoryless 
channel (DMC). The decoding algorithm for linear codes is 
then shown to be a special case of this problem. 

The algorithm we derive is similar in concept lo the method 
of Chang and Hancock [3] for removal of intersymbol inter- 
ference. Some work by Baum and Petrie [4] is also relevant to 
this problem. An algorithm similar to the one described in this 
correspondence was also developed independently by McAdam 
et al. [5]. 

II. THE GENERAL PROBLEM 

Consider the transmission situation of Fig. 1. The source is 
assumed to be a discrete-time finite-state Markov process. The 
M  distinct states of the Markov source are indexed by the integer 
m, m  = O,l,..., M  - 1. The state of the source at time t is 
denoted by S, and its output by X,. A state sequence of the 
source extending from time t to t’ is denoted by S,f’ = 
&St+1,-. . ,&, and the corresponding output sequence is 
x,” = xt,xt+l,* f *,x*r. 

The state transitions of the Markov source are governed by 
the transition probabilities 

p,(m 1 m’) = Pr {S, = m 1 St-, = m’} 

and the output by the probabilities 

qt(X / m’,m) = Pr {X, = X 1 S,-, = m’; S, = m} 

where X belongs to some finite discrete alphabet. 
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Fig. 1. Schematic diagram of transmission system. 
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Fig. 2. (a) State transition diagram for 3-state Markov source. (b) Trellis 

diagram for source of Fig. 2(a). 

The Markov source starts in the initial state S, = 0, and 
produces an output sequence X1’ ending in the terminal state 
S, = 0. Xi’ is the input to a noisy DMC whose output is the 
sequence Yi’ = Y,,Y,,. . . ,Y,. The transition probabilities of 
the DMC are defined by R(. 1.) so that for all 1  5 t I z 

Pr tYl* I XI’> = fJl NYj I Xj>. 

The objective of the decoder is to examine Y,’ and estimate the 
APP of the states and transitions of the Markov source, i.e., 
the conditional probabilities 

Pr {S, = m  1 Y,“} = Pr {S, = m; Y,‘}/Pr (Yi’} (1) 
and 

Pr {S,-, = m’; S, =  m / Yl’} 

= Pr {S,-, = m’; St =  m; Y,“}/Pr {Y,‘}. (2) 

A graphical interpretation of the problem is quite useful. A 
time-invariant Markov source is generally represented by a state 
transition diagram of the type in Fig. 2(a). The nodes are the 
states and the branches represent the transitions having nonzero 
probabilities. If we index the states with both the time index t 
and state index m, we get the “trellis” diagram of Fig. 2(b). 
The trellis diagram shows the time progression of the state 
sequences. For every state sequence SIT there is a unique path 
through the trellis diagram, and vice versa. 

If the Markov source is time variant, then we can no longer 
represent it by a state-transition diagram; however, it is obvious 
that we can construct a trellis for its state sequences. 

Associated with each node in the trellis is the corresponding 
APP Pr {S, = m 1 Y1”} and associated with each branch in the 

trellis is the corresponding APP Pr {S,- r = m’; S, =  m I Yl’). 
The objective of the decoder is to examine Yi’ and compute 
these APP. 

For ease of exposition, it is simpler to derive the joint 
probabilities 

and 
A,(m) = Pr {S, = m; Y,‘} 

o,(m’,m) = Pr {S,-, = m’; St =  m; Yl’). 

Since, for a given Yi’, Pr {Y,‘} is a cc,rstant, we can divide 
A,(m) and o,(m’,m) by Pr { Yi’} (= J.,(O), which is available from 
the decoder) to obtain the conditional probabilities of (1) and 
(2). Alternatively, we can normalize A,(m) and o,(m’,m) to add 
up to 1 to obtain the same result. We  now derive a method for 
obtaining the probabilities I,(m) and q(m’,m). 

Let us define the probability functions 

a,(m) = Pr {S, = m; Yi> 

B,(m) = Pr {Yt+ I I & = m> 
y,(m’,m) = Pr {S, = m; Y, j St-, =  m’}. 

Now 

a,(m) = Pr {S, = m; Y,‘} .Pr {Y:+, ) S, = m; Y,‘?  

= a,(m).Pr {I;‘+r IS, = m} 

= a,(m) * A(m). (3) 

The middle equality follows from the Markov property that 
if S, is known, events after time t do not depend on Yi’. 

Similarly, 

o,(m’,m) = Pr {S,- I = m’; Yi-‘} * Pr {S, = m; Y, I St- 1  =  m’} 

.Pr {Y;+i S, = m} 

= kl(m’>. y,(m’,m> * PAm>. 

Now for t = 1,2;. .,z 
M-l 

(4) 

a,(m) = C Pr {S,-, = m’; St =  m; Y,“} 
?n’=o 

= 3 Pr {S,-, = m’; Yi-‘} . Pr {S, = m; & ) St.-, =  m’} 

= s at- ,(m’> . h(m’,m). (5) 

Again, the middle equality follows from the fact that events 
after time t - 1  are not influenced by Y:-’ if S,-i is known. 
For t = 0 we have the boundary conditions 

so(O) = 1, and so(m) = 0, for m #  0. (6) 

Similarly, for t = 1,2,. . ., z - 1  

M-l 

M m ) = JoPr {&+I = m ’; V+I I St = m l 

=~Pr{S,+,=m’;Y,,,IS,=m)~Pr{Y~+a/S~+i=m’1 

= 3 Dt+lW>. h+lhm’). (7) 

The appropriate boundary conditions are 

P,(O) = 1, and B,(m) = 0, for m #  0. (8) 



286 

Relations (5) and (7) show that a,(m) and b,(m) are recursively 
obtainable. Now 

y,(m’,m) = C Pr {S, = m I St-, = m’} 
X 

. Pr {X, = X 1 S,-, = m’, St = m} * Pr {G I X} 

= c dm I m ’> * qt(X I m ’, m ) * NY, I X) (9) 

where the summation in (9) is over all possible output symbols X. 
We can now outline the operation of the decoder for computing 

a,(m) and o&m’,m). 
1) so(m) and /3,(m), m  = O,l, . . ., M  - 1 are initialized ac- 

cording to (6) and (8). 
2) As soon as Y, is received, the decoder computes y$(m’,m) 

using (9) and at(m) using (5). The obtained values of a,(m) are 
stored for all t and m. 

3) After the complete sequence Y1’ has been received, the 
decoder recursively computes p,(m) using (7). When the bt(m) 
have been computed, they can be multiplied by the appropriate 
a,(m) and y,(m’,m) to obtain l,(m) and a,(m’,m) using (3) and (4). 

We now discuss the application of this algorithm to the decod- 
ing of linear codes. 

III. APPLICATION TO CONVOLUTIONAL CODES 

Consider a binary rate ko/no convolutional encoder of overall 
constraint length k,v. The input to the encoder at time t is the 
block Z, = (it”‘,it’2’, . . . ,&@“) ) and the corresponding output is 
X, = (x,(l), . . .,xt(“o)). Th e encoder can be implemented by k, 
shift registers, each of length v, and the state of the encoder is 
simply the contents of these registers, i.e., the v most recent 
input blocks. Representing the state as a kv-tuple, we have 

St = (St(1),S;2),.-.,Sjkov)) = (zt,zt_l,~~~,zt_v+l). (10) 
By convention, the encoder starts in state So = 0. An informa- 
tion sequence I, r is the input to the encoder, followed by v 
blocks of all-zero inputs, i.e., by Z$+1 = O,O,. . .,O where 
t = T + v, causing the encoder to end in state S, = 0. The 
trellis structure of such a convolutional code is well known [2] 
and we assume that the reader is familiar with it. As an example, 
we illustrate in Fig. 3 a rate-: code with v = 2 and its trellis 
diagram for z = 6. The transition probabilities p,(m I m’) of 
the trellis are governed by the input statistics. Generally, we 
assume all input sequences equally likely for t I T, and since 
there are 2ko possible transitions out of each state, p&m 1 m’) = 
2-ko for each of these transitions. For t > T, only one transition 
is possible out of each state, and this has probability 1. The 
output X, is a deterministic function of the transition so that, for 
each transition, there is a 0 - 1 probability distribution 
qt(X ] m’,m) over the alphabet of binary n-tuples. For time- 
invariant codes qt(. I .) is independent of t. If the output sequence 
is sent over a DMC with symbol transition probabilities r(. I.), 
the derived block transition probabilities are 

NY, I X,> = jnl r(y’j) I x,‘j’> 

where Y, = (J+(‘), . . . ~~(“0)) is the block received by the receiver 
at time t. For instance, in a BSC with crossover probability pc 

NY, I Xt) = CP,)~U - ~c)n-~ 

where d is the Hamming distance between X, and Y,. 
To minimize the symbol probability of error, we must determine 

the most likely input digits it(j) from the received sequence Y1’. 
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Fig. 3. Kate-l/2 encoder and its trellis diagram. 

We assume that the l,(m) have been computed as shown in the 
previous section. Let A,(j) be the set of states S, such that 
st(j) = 0. Note that A,(j) is not dependent on t. Then from (10) 
we have 

St W  = it(j) > j = 1,2;+.,ko 

which implies 

Pr {i,“’ = 0; Y17} = C l,(m). 
St E .4p) 

Normalizing by Pr { Yl’} = a,(O) we have 

Pr {i,‘j’ = 0 I Y,r> = a+) C A,(m). 
r S, E .4,(j) 

We decode it(j) = 0 if Pr {it(j) = 0 ] Yl’} 2 0.5, otherwise 
it(j) = 1. 

Sometimes it is of interest to determine the APP of the en- 
coder output digits, i.e., Pr {x,(i) = 0 I Y,“}. One instance where 
such probabilities are needed is bootstrap hybrid decoding [6]. 
Let B,(j) be the set of transitions S,-, = m’ + St = m  such 
that the jth output digit x,(j) on that transition is 0. B,(j) is 
independent of t for time-invariant codes. Then 

which can be normalized to give Pr {xt(j) = 0 I Y1’}. We can 
obtain the probability of any event that is a function of the 
states by summing the appropriate a,(m); likewise, the o,(m’,m) 
can be used to obtain the probability of any event which is a 
function of the transitions. 

Unfortunately, the algorithm requires large storage and con- 
siderable computation. All the values of a,(m) must be stored, 
which requires roughly 2”O. r storage locations. The storage 
size grows exponentially with constraint length and linearly 
with block length. The number of computations in determining 
the a,(m) (or j?,(m)) for each t are M. 2ko multiplications and M  
additions of 2ko numbers each. The computation of the y,(m’,m) 
is quite simple and in practice is most easily accomplished by a 
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Fig. 4. Parity check matrix and trellis diagram for (5,3) block code. 

table lookup. For this reason it is easier to recompute the 
y,(m’,m) in step 3) rather than to save them from step 2). Com- 
puting n,(m) requires Mmultiplications for each t and computing 
the APP of the input digits requires k,M/2 additions. In com- 
parison, the Viterbi algorithm requires the calculation of a 
quantity essentially similar to y&‘,m) with Me 2ko additions 
and M2ko-way compares for each t. In view of the complexity 
of the algorithm, it is practical only for short constraint lengths 
and short block lengths. 

IV. APPLICATION TO BLOCK CODES 

The results of Section II can be applied to any code for which 
a coding trellis can be drawn. We now show how a trellis may 
be obtained for a linear block code. 

Let H be the parity check matrix of a linear (n,k) code, and 
let hi, i = 1,2,. .a, n be the column vectors of H. Let C = 
(Cl,CZ, * * * ,c,,) be a codeword. We define the states S,, t = 
O,l,* * f ,II pertaining to C as follows: 

so = 0 
and 

St = St-1 + Cth, = k Cihiy t = 1,2;..,n. (11) 
j=l 

Obviously, S,, = 0 for all codewords and the current state S, 
is a function of the preceding state S,- 1 and the current input ct. 

Equation (11) can be used to draw a trellis diagram for a 
block code with at most 2’ states at each level where r = n - k. 
Each transition is labeled with the appropriate codeword symbol 
ct. As an example, a trellis for a block code with 

[ 

1 1 0 1 0 
H=O1lOl 1 

is shown in Fig. 4. The structure of the trellis is irregular in 
comparison to the trellis of a convolutional code, since a block 
code is equivalent to a time-varying Markov source whereas a 
convolutional code is a stationary Markov source. 

Forney (in a private communication) has pointed out that 
the number of states needed in the trellis can be reduced to less 
than 2’ by rearrangement of the code bits. The interesting 
question of what is the minimum number of states needed is 
not dealt with here. 

The algorithm derived here shows that any parity check code 
with r parity bits can be decoded with complexity N 2’ on an 
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arbitrary memoryless channel. This result had previously only 
been known for the BSC (using syndromes and table-lookup 
decoding). 

V. COMMENTS AND GENERALIZATIONS 

A brute-force approach to minimizing word or symbol error 
probability would work as follows: given the received sequence 
Yr’ we could compute the APP Pr {X1’ ] Yr’} for each code- 
word X1’. To minimize word error probability, we would pick 
the codeword having maximum value of Pr {X1’ 1 Y1’} among 
all codewords. To minimize the symbol error probability of the 
jth input digit, we compute C Pr {X1’ ] Yr’}, where the sum is 
over all codewords havingjth input digit 0; if this sum 2 0.5, 
we decode the jth input digit as 0. In the case of linear codes we 
can avoid the calculation of Pr {X1’ ] Y1”} for each possible 
codeword by taking advantage of the state structure of the code. 
The complexity of the brute-force method is proportional to 
the number of codewords, i.e., N 2k. In convolutional codes 
k = koT >> k,v which makes the trellis decoding approach 
attractive. In block codes, the trellis method is advantageous 
as long as r < k, i.e., for high-rate codes. 

The algorithm derived in this correspondence cannot be con- 
sidered as an attractive alternative to Viterbi decoding, because 
of its increased complexity. Even though Viterbi decoding is not 
optimal in the sense of bit error rate, in most applications of 
interest the performance of both algorithms would be effectively 
identical. The main virtue of the algorithm is in the fact that 
the APP of the information and channel digits are obtained, 
which can be useful in applications such as bootstrap decoding 
M . 

Many interesting generalizations of the algorithm are possible. 
We point out a few. First, the restriction that the starting and 
terminal states of the source be known can be removed by 
changing the initial conditions for so(m) and P,(m). Second, the 
algorithm can be made applicable to all finite-state channels 
by expanding the state-space to be the cross-product of the 
encoder states and the channel states. Finally, the extension to 
nonbinary codes is quite obvious. 
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