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Problem 1.
Proof:
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is a linear transformation. So this is én+1,k) linear code over F.
Below we study the minimum (nonzero) weight of this code.
@) If 1,, =0, P(x) has degree less thak—1 and therefore has no more thdn-2

roots. So among P(a,),P(a,),---,P(a,.,) atmost k-2 of them are zeroes.
LI The weight of thecodeword is at least—(k—2) =n—-k + 2.

@) If 1., #0, P(x) has degre& —1 and therefore has no more than-1 different
roots. So amongP(a,), P(a,),---,P(a,.,) at most k —1 of them are zeroes. And
we have P(»)=1,,#0. L The weight of the codeword is at least
n-(k-1)+1=n-k+2.

So the code’s weight is at leastn —k + 2. By the Singleton bound the weight d the
code isn—k + 2, and the code is MDS. [

Problem 2.
Proof: The formula in Theorem 8.5 of Wicker (p. 189) is:
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Since for MDS codes d,,, =n-k+1, w-d_,
above formula becomes:
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and we get the formula derived in class by Prof. McEliece. 0

Problem 3.

Solution: This problem doesn’t have a fixed form of answer. And | give full score to any
answer that makes sense.
Generally speaking, the fact that the procedtuelid returnso(x) =1 here

means there are too many errors, and a robust algorithm should realize that now
or later. If the algorithm is ‘poor—that is, it doesn’t check if the received
codewords are correctablghen it will use the following recursive formula

d
S, modn = _z .S
=i

to computeS for j =r +1ton. Hered is the degree ot’(x), sod=0 and

jmodn

the values ofS;, ., (j =r +1---,n) will not be computed at all. That will lead
to decoding gor.

Problem 4.
(a) When e, =16 and e =1, the decoder will return the codeword that contains the
15 un-erased received symbols as its corresponding symbols, which is different
from the correct codeword. So the probyp of decoder error is 1.
(b) When e, =15 and g =1, if a decoder error occurs theg < (r —¢,)/2=¢€, =0.

Therefore the returned codeword hasn - g, —e, =15 components in common
with the correct codeword, whicmeans the returned codeword is the same as the
correct codeword and there is no decoder error, and that is a contradiction.
Therefore, the probability of decoder error is O.

(c) The positions of the erasures and errors don’t affect our analysis below. So
WLOG we suppose in the received codeword (C,,C,,---,C,), the first 14
components-C,,C,,---,C ,—are erased, the two errors are i€,, and C,;, and
the last 15 components are correct.

If a decoder errooccurs, therg, < (r —e,)/2=¢e <1.If g =0, orif g =1 and

the position where the received codeword differs from the returned codeword is in
C, or C,.,then again the returne dcodeword willhave n-g,—-¢ =15
components in common with the correct codeword, which indicates there is no
decoder error. Soe, =1 if a decoder error occurs, and the position where the
received codeword differs from the retu  rned codeword must be among
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Say the received codeword differs from the returned codeword in positiorC,
(16<i<30). There are 15 choices for. Fix i, then no matter what the error in
C., is, C,, and the 14 components amorn@,,,C,,,---,C,, exceptC, determines
the returned codeword-and thus determines the value &,,. However, if there
doesn’t have to be a decoder error, thé€y, can take onq—1 values because the
error in it is between 1 and —1. So the probability of decoder error is
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