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The MacWilliams Identities

Theorem 1 (The Binary MacWilliams Identities). Let A(z) and B(z) denote the
weight enumerators for an (n, k) binary linear code C and its dual code C*, i.e.,

(1) A(z) =) Az
(2) B(z) = Zszj

where A; denotes the number of words of weight ¢ in C', and B; denotes the number of
words of weight j in Ct. Then A(z) and B(z) are related by the formula

1 - % n—i
(3) B(z) = Q—kZAi(l—z) (14 z)"".
i=0
Alternatively, equating coefficients of 27 on both sides of (3), we have

1« n ,
(4) szz_kZAiKi(,j) for j=0,...,n,
i=0

where Ki(;l.) is the coefficient of 27 in (1 — 2)*(1 + 2)"7%, i.e.,
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What (4) says is that the weight enumerator vectors a = (Ag, A1,...,A,) and b =
(Bo, B, ..., B,) are related by the formula

1 n
(6) b= Q—kaK( ),
where K(™) is the (n + 1) x (n + 1) matrix whose (i, j) entry is KZ(TJL) For example, with

n = 4 we have
4 6 4 1

1
1 2 0 -2 -1
KY=11 0 -2 0 1
1 -2 0 2 -1
1 -4 6 -4 1



Proof : First, some preliminaries. If € = (x1,...,2,,) is a binary vector of any length, ||
denotes its Hamming weight, i.e., the number of nonzero components of x. In particular,
if x is a scalar, i.e., m = 1, then

0 ifz=0
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If x = (z1,...,2,) and y = (y1,...,ym) are two binary vectors, we define the inner

product of x and y as follows:
(8) (@,y) = (—1)mn ey,
where (—=1)° = 1, (-1)! = —1. Thus for example, (011,110) = (-1)! = —1 and
(011,111) = (—1)° = +1.
Our proof of the MacWilliams identities is based on two fairly easy technical lemmas

about (x,y).

Lemma 1. IfC is an (n, k) linear code over GF(2), and if y is an arbitrary n-vector over
GF(2), then
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Proof : If y € C+, then (x,y) = 1 for all £ € C, so that the first alternative holds. If, on
the other hand, y ¢ C, then there is at least one codeword zo € C such that (x,y) = —1.
Then in the pairing

T <~ T+ xo,

if (x,y) = +1, then (x + xp,y) = —1, and vice-versa, so that in the sum (9), the values

+1 and —1 occur equally often, which means the sum is zero. =

Lemma 2. Let x be a fixed vector of length n over GF(2), with |x| = i, and let V; denote
the set of all binary vectors of length n and weight j. Then

(10) > (@y) =K.

yev;

Proof : Without loss of generality we may assume a has the form
7 n—i

—
z=(11---100---0).

There are then exactly (z) (:__;L) binary vectors y of length n and weight j which share h
ones with x, and each of these y’s has (x,y) = (—1)*. Thus

> @ =20 (3)(07)):

yeV; h



which, by (5), equals KZ-(Z). .

Our proof of the MacWilliams Identities is now simply a matter of noting that

oD @y =) > (=)

yeV; xzeC xzeC yeV;
and that by Lemma 1,
k k
> D lmy = > =B,
yeV; xeC yeV;NCt

while by Lemma 2,

YD fmy) = K= ZAKW

zcC yeV; xeC
Thus 28B; = 31" | A, KI(Z), the same as (4). =

The MacWilliams identities can be generalized to linear codes over nonbinary alphabets.
Here is the generalization. We omit the proof.

Theorem 2 (The g-ary MacWilliams Identities). Let A(z) and B(z) denote the
weight enumerators for an (n, k) g-ary linear code C' and its dual code C*, i.e.,

(11) A(z) =) Az
=0

(12) B(z) = Zszj
=0

where A; denotes the number of words of weight ¢ in C', and B; denotes the number of
words of weight j in C+. Then A(z) and B(z) are related by the formula

n
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Alternatively, equating coefficients of 27 on both sides of (13), we have
(14) B; = RZAK(") for j=0,...,n

where Ki(g) is the coefficient of 27 in (1 — 2)*(1 + (¢ — 1)2)"7¢, i.e.,
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