EE/Ma 127a Error-Correcting Codes draft of October 11, 2000

R. J. McEliece 162 Moore

The MacWilliams Identities

Theorem 1 (The Binary MacWilliams Identities). Let A(z) and B(z) denote the weight enumerators for an (n, k) binary linear code C and its dual code C^{\perp} , i.e.,

(1)
$$A(z) = \sum_{i=0}^{n} A_i z^i$$

(2)
$$B(z) = \sum_{j=0}^{n} B_j z^j$$

where A_i denotes the number of words of weight *i* in *C*, and B_j denotes the number of words of weight *j* in C^{\perp} . Then A(z) and B(z) are related by the formula

(3)
$$B(z) = \frac{1}{2^k} \sum_{i=0}^n A_i (1-z)^i (1+z)^{n-i}.$$

Alternatively, equating coefficients of z^{j} on both sides of (3), we have

(4)
$$B_j = \frac{1}{2^k} \sum_{i=0}^n A_i K_{i,j}^{(n)} \quad \text{for } j = 0, \dots, n,$$

where $K_{i,j}^{(n)}$ is the coefficient of z^j in $(1-z)^i(1+z)^{n-i}$, i.e.,

(5)
$$K_{i,j}^{(n)} = \sum_{h} (-1)^{h} \binom{i}{h} \binom{n-i}{j-h}.$$

What (4) says is that the weight enumerator vectors $\boldsymbol{a} = (A_0, A_1, \dots, A_n)$ and $\boldsymbol{b} = (B_0, B_1, \dots, B_n)$ are related by the formula

(6)
$$\boldsymbol{b} = \frac{1}{2^k} \boldsymbol{a} K^{(n)},$$

where $K^{(n)}$ is the $(n+1) \times (n+1)$ matrix whose (i, j) entry is $K^{(n)}_{i,j}$. For example, with n = 4 we have

$$K^{(4)} = \begin{pmatrix} 1 & 4 & 6 & 4 & 1 \\ 1 & 2 & 0 & -2 & -1 \\ 1 & 0 & -2 & 0 & 1 \\ 1 & -2 & 0 & 2 & -1 \\ 1 & -4 & 6 & -4 & 1 \end{pmatrix}.$$

Proof: First, some preliminaries. If $\boldsymbol{x} = (x_1, \ldots, x_m)$ is a binary vector of any length, $|\boldsymbol{x}|$ denotes its Hamming weight, i.e., the number of nonzero components of \boldsymbol{x} . In particular, if x is a *scalar*, i.e., m = 1, then

(7)
$$|x| = \begin{cases} 0 & \text{if } x = 0\\ 1 & \text{if } x = 1. \end{cases}$$

If $\boldsymbol{x} = (x_1, \ldots, x_m)$ and $\boldsymbol{y} = (y_1, \ldots, y_m)$ are two binary vectors, we define the *inner* product of \boldsymbol{x} and \boldsymbol{y} as follows:

(8)
$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = (-1)^{x_1 y_1 + \dots + x_m y_m},$$

where $(-1)^0 = 1$, $(-1)^1 = -1$. Thus for example, $\langle 011, 110 \rangle = (-1)^1 = -1$ and $\langle 011, 111 \rangle = (-1)^0 = +1$.

Our proof of the MacWilliams identities is based on two fairly easy technical lemmas about $\langle x, y \rangle$.

Lemma 1. If C is an (n, k) linear code over GF(2), and if \boldsymbol{y} is an arbitrary n-vector over GF(2), then

(9)
$$\sum_{\boldsymbol{x}\in C} \langle \boldsymbol{x}, \boldsymbol{y} \rangle = \begin{cases} 2^k & \text{if } \boldsymbol{y} \in C^{\perp} \\ 0 & \text{if } \boldsymbol{y} \notin C^{\perp} \end{cases}$$

Proof: If $\boldsymbol{y} \in C^{\perp}$, then $\langle \boldsymbol{x}, \boldsymbol{y} \rangle = 1$ for all $\boldsymbol{x} \in C$, so that the first alternative holds. If, on the other hand, $\boldsymbol{y} \notin C^{\perp}$, then there is at least one codeword $\boldsymbol{x}_0 \in C$ such that $\langle \boldsymbol{x}, \boldsymbol{y} \rangle = -1$. Then in the pairing

$$oldsymbol{x} \leftrightarrow oldsymbol{x} + oldsymbol{x}_0,$$

if $\langle \boldsymbol{x}, \boldsymbol{y} \rangle = +1$, then $\langle \boldsymbol{x} + \boldsymbol{x}_0, \boldsymbol{y} \rangle = -1$, and vice-versa, so that in the sum (9), the values +1 and -1 occur equally often, which means the sum is zero.

Lemma 2. Let x be a fixed vector of length n over GF(2), with |x| = i, and let V_j denote the set of all binary vectors of length n and weight j. Then

(10)
$$\sum_{\boldsymbol{y}\in V_j} \langle \boldsymbol{x}, \boldsymbol{y} \rangle = K_{i,j}^{(n)}.$$

Proof : Without loss of generality we may assume x has the form

$$\boldsymbol{x} = (\overbrace{11\cdots 1}^{i} \overbrace{00\cdots 0}^{n-i}).$$

There are then exactly $\binom{i}{h}\binom{n-i}{j-h}$ binary vectors \boldsymbol{y} of length n and weight j which share h ones with \boldsymbol{x} , and each of these \boldsymbol{y} 's has $\langle \boldsymbol{x}, \boldsymbol{y} \rangle = (-1)^h$. Thus

$$\sum_{\boldsymbol{y}\in V_j} \langle \boldsymbol{x}, \boldsymbol{y} \rangle = \sum_h (-1)^h \binom{i}{h} \binom{n-i}{j-h},$$

which, by (5), equals $K_{i,j}^{(n)}$.

Our proof of the MacWilliams Identities is now simply a matter of noting that

$$\sum_{oldsymbol{y}\in V_j}\sum_{oldsymbol{x}\in C}\langleoldsymbol{x},oldsymbol{y}
angle = \sum_{oldsymbol{x}\in C}\sum_{oldsymbol{y}\in V_j}\langleoldsymbol{x},oldsymbol{y}
angle,$$

and that by Lemma 1,

$$\sum_{\boldsymbol{y} \in V_j} \sum_{\boldsymbol{x} \in C} \langle \boldsymbol{x}, \boldsymbol{y} \rangle = \sum_{\boldsymbol{y} \in V_j \cap C^{\perp}} 2^k = 2^k B_j,$$

while by Lemma 2,

$$\sum_{oldsymbol{x}\in C}\sum_{oldsymbol{y}\in V_j}\langleoldsymbol{x},oldsymbol{y}
angle = \sum_{oldsymbol{x}\in C}K^{(n)}_{|oldsymbol{x}|,j} = \sum_{i=0}^nA_iK^{(n)}_{i,j}.$$

Thus $2^k B_j = \sum_{i=0}^n A_i K_{i,j}^{(n)}$, the same as (4).

The MacWilliams identities can be generalized to linear codes over nonbinary alphabets. Here is the generalization. We omit the proof.

Theorem 2 (The q-ary MacWilliams Identities). Let A(z) and B(z) denote the weight enumerators for an (n, k) q-ary linear code C and its dual code C^{\perp} , i.e.,

(11)
$$A(z) = \sum_{i=0}^{n} A_i z^i$$

(12)
$$B(z) = \sum_{j=0}^{n} B_j z^j$$

where A_i denotes the number of words of weight *i* in *C*, and B_j denotes the number of words of weight *j* in C^{\perp} . Then A(z) and B(z) are related by the formula

(13)
$$B(z) = \frac{1}{q^k} \sum_{i=0}^n A_i (1-z)^i (1+(q-1)z)^{n-i}.$$

Alternatively, equating coefficients of z^{j} on both sides of (13), we have

(14)
$$B_j = \frac{1}{q^k} \sum_{i=0}^n A_i K_{i,j}^{(n)} \quad \text{for } j = 0, \dots, n,$$

where $K_{i,j}^{(n)}$ is the coefficient of z^j in $(1-z)^i(1+(q-1)z)^{n-i}$, i.e.,

(15)
$$K_{i,j}^{(n)} = \sum_{h} (-1)^{h} \binom{i}{h} \binom{n-i}{j-h} (q-1)^{j-h}.$$