
Draft of February 21, 1999

Chapter 9: BCH, Reed-Solomon, and Related Codes

9.1 Introduction.

In Chapter 7 we gave one useful generalization of the (7, 4) Hamming code of the Introduction: the family of
(2m− 1, 2m−m− 1) single error-correcting Hamming Codes. In Chapter 8 we gave a further generalization,
to a class of codes capable of correcting a single burst of errors. In this Chapter, however, we will give a far
more important and extensive generalization, the multiple-error correcting BCH and Reed-Solomon Codes.

To motivate the general definition, recall that the parity-check matrix of a Hamming Code of length
n = 2m − 1 is given by (see Section 7.4)

H = [v0 v1 · · · vn−1] , (9.1)

where (v0,v1, . . . ,vn−1) is some ordering of the 2m − 1 nonzero (column) vectors from Vm = GF (2)m. The
matrix H has dimensions m × n, which means that it takes m parity-check bits to correct one error. If we
wish to correct two errors, it stands to reason that m more parity checks will be required. Thus we might
guess that a matrix of the general form

H2 =
[

v0 v1 · · · vn−1

w0 w1 · · · wn−1

]
,

where w0,w1, . . . ,wn−1 ∈ Vm, will serve as the parity-check matrix for a two-error-correcting code of length
n. Since however the vi’s are distinct, we may view the correspondence vi → wi as a function from Vm into
itself, and write H2 as

H2 =
[

v0 v1 · · · vn−1

f(v0) f(v1) · · · f(vn−1)

]
. (9.3)

But how should the function f be chosen? According to the results of Section 7.3, H2 will define a
two-error-correcting code iff the syndromes of the 1 + n +

(
n
2

)
error pattern of weights 0, 1 and 2 are all

distinct. Now any such syndrome is a sum of a (possible empty) subset of columns of H2, and so is a vector
in V2m. But to be consistent with our present viewpoint let us break the syndrome s = (s1, . . . , s2m) in two
halves: s = (s1, s2), where s1 = (s1, . . . , sm) and s2 = (sm+1, . . . , s2m) are both in Vm. With this convention,
the syndrome of the all-zero pattern is (0, 0); a single error in position i has s = (vi, f(vi)); a pair of errors
at positions i and j gives s = (vi + vj , f(vi) + f(vj)). We can unify these three cases by defining f(0) = 0
(notice that since 0 is not a column of H, f has not yet been defined at 0); then the condition that these
syndromes are all distinct is that the system of equations

u + v = s1

f(u) + f(v) = s2

(9.3)

has at most one solution (u,v) for each pair of vectors from Vm. (Naturally we do not regard the solution
(u,v) as distinct from (v,u).)

Now we must try to find a function f : Vm → Vm, f(0) = 0, with the above property. We could try a
linear mapping f(v) = Tv for some linear transformation T , but this doesn’t work (see Prob 9.1); so f must
be nonlinear. To describe nonlinear functions of vectors v ∈ Vm, we need to know that it is possible to define
a multiplication on the vectors of Vm, which when combined with the vector addition makes Vm into a field.
(The field is the Galois field GF (2m); the properties of finite fields that we shall need are stated in Appendix
C.) Using this fact, it is easy to see (cf. Prob 9.2) that every function f : Vm → Vm can be represented
by a polynomial. Polynomials of degree ≤ 2 don’t work (see Prob. 9.1); but f(v) = v3 does, as we shall
shortly see. Hence (we change notation to emphasize that from now on we regard the elements of Vm not as

1

m-dimensional vectors over GF (2), but as scalars from GF (2m)) if (α0, α1, . . . αn−1) is an arbitrary ordering
of the nonzero elements of GF (2m), then the matrix

H2 =


α0 α1 · · · αn−1

α3
0 α3

1 · · · α3
n−1


 (9.4)

is the parity-check matrix of a two-error-correcting binary code of length n = 2m − 1. Equivalently, C =
(C0, C1, . . . , Cn−1) ∈ Vn is a codeword in the code with parity-check matrix H2 iff

∑n
i=0 Ciαi =

∑n
i=0 Ciα

3
i =

0. Since as a matrix over GF (2), H2 has 2m rows (which are linearly independent for m ≥ 3; see Prob. 9.5),
the dimension of the code is ≥ n− 2m = 2m − 1− 2m.

The proof that the matrix H2 in (9.4) does indeed define a two-error-correcting code, as well as the
generalization to t error-correcting codes, is given in the following celebrated theorem.

Theorem 9.1. Let (α0, α1, . . . , αn−1) be an ordering of the nonzero elements of GF (2m), and let t be a
positive integer ≤ 2m−1 − 1. Then the t× n matrix

H =




α0 α1 · · · αn−1

α3
0 α3

1 · · · α3
n−1

α5
0 α5

1 · · · α5
n−1

...
α2t−1

0 α2t−1
1 · · · α2t−1

n−1




is the parity-check matrix of a binary (n, k) code capable of correcting all error patterns of weight ≤ t, with
dimension k ≥ n−mt.

Proof. A vector C= (C0, . . . , Cn−1) ∈ Vn will be a codeword iff HCT = 0, which is equivalent to the
following system of t linear equations in the Ci’s:

n−1∑
i=0

Ciα
j
i = 0, j = 1, 3, . . . , 2t− 1. (9.5)

Squaring the jth equation in (9.5), we get 0 = (
∑

Ciα
j
i)

2 =
∑

C2
i α

2j
i =

∑
Ciα

2j
i (since (x+y)2 = x2 +y2 in

characteristic 2 and x2 = x in GF (2)). Hence an equivalent definition of a codeword is the following system
of 2t equations:

n−1∑
i=0

Ciα
j
i = 0, j = 1, 2, . . . , 2t. (9.6)

It follows that we could equally well use the 2t× n parity-check matrix

H ′ =



α0 α1 · · · αn−1

α2
0 α2

1 · · · α2
n−1

...
α2t

0 α2t
1 · · · α2t

n−1




to describe the code. According to Theorem 7.3, H, will be the parity-check matrix of a t-error-correcting
code iff every subset of 2t or fewer columns of H ′ is linearly independent. Now a subset of r columns from
H ′, where r ≤ 2t, will have the form

B =



β1 · · · βr
β2

1 · · · β2
r

...
β2t

1 · · · β2t
r


 ,

2

where β1, β2, . . . , βr are distinct nonzero elements of GF (2m). Now consider the matrix B′ formed from the
first r rows of β:

B′ =



β1 · · · βr
...
βr1 · · · βrr


 .

The matrix B′ is nonsingular, since its determinant is

det(B′) = β1 · · ·βr det




1 · · · 1
β1 · · · βr
...

βr−1
1 · · · βr−1

r




= β1 · · ·βr
∏
i<j

(βj − βi) �= 0

by the Vandermonde determinant theorem (see Prob. 9.3). Hence the columns of B′, let alone those of B,
cannot be linearly dependent, and so the code does correct all error patterns of weight ≤ t. To verify the
bound k ≥ n −mt on the dimension, observe that the original parity-check matrix H, viewed as a matrix
with entries from GF (2) rather than GF (2m), has dimensions mt × n. And by the results of Section 7.1,
this means that the dual code has dimension ≤ mt, and so the code itself has dimension ≥ n−mt.

The codes described in Theorem 9.1 are called BCH codes, in honor of their inventors Bose, Ray-
Chaudhuri, and Hocquenghem.* These codes are important, not so much because of Theorem 9.1 itself
(other codes can have higher rates and larger minimum distances), but rather because there are efficient
encoding and, especially, decoding algorithms for them. In the next section, we will see that if we choose
exactly the right ordering (α0, α1, . . . , αn−1), BCH codes magically become cyclic codes, and so by the results
of Chapter 8, the encoding automatically becomes simple. Additionally, this “cyclic” view of BCH codes
will allow us to refine our estimates of the codes’ dimensions. Then in Sections 9.3-9.5, we will fully describe
one version of Berlekamp’s famous decoding algorithm for BCH codes.

* Of course, it should be BRH codes, but an early reader of the paper by Bose and Ray-Chaudhuri
mistakenly supposed that the second author’s first name was Raymond, and so we are stuck with this
innacurate acronym.

3

9.2. BCH Codes as cyclic codes.
Recall the definition of a t-error correcting BCH code of length n = 2m−1: C = (C0, . . . , Cn−1) is a codeword
iff

∑n−1
i=0 Ciα

j
i = 0 for j = 1, 3, . . . , 2t− 1 (equivalently, for j = 1, 2, 3, . . . , 2t), where (α0, α1, . . . , αn−1) is an

arbitrary but fixed ordering of the nonzero elements of GF (2m). Although changing from one such ordering
to another cannot affect the error-correcting abilities of the code on a memoryless channel, nevertheless there
is a “best” ordering for purposes of implementation. That ordering is to set αi = αi, where α is a primitive
root (see Appendix C) of GF (2m)∗. With this ordering, the definition becomes: C = (C0, C1, . . . , Cn−1) is
a codeword iff

n−1∑
i=0

Ciα
ij = 0, for j = 1, 3, . . . , 2t− 1 (or j = 1, 2, 3, . . . , 2t.) (9.7)

In this realization, the BCH code becomes a cyclic code, in the sense of Chapter 8. To see that this is so, let
C(x) = C0 + C1x+ · · ·+ Cn−1x

n−1 be the generating function for the codeword C; then (9.7) becomes

C(αj) = 0, j = 1, 2, . . . , 2t. (9.8)

Now let CR be the right cyclic shift of the codeword C; its generating function is, by Theorem 8.1, CR(x) =
xC(x) mod (xn − 1), which means that CR(x) = xC(x) + M(x)(xn − 1) for some polynomial M(x). Thus
for j = 1, 2, . . . , 2t,

CR(αj) = αjC(αj) +M(αj)(αjn − 1).

But C(αj) = 0 by (9.8), and αjn − 1 = 0 since αn = 1. It follows that CR(αj) = 0 for j = 1, 2, . . . , 2t, so
that CR is also in the BCH code defined by (9.7), which means that the code is cyclic.

It now follows from Theorem 8.3 that every BCH code is characterized by its generator polynomial
g(x). But how can we compute g(x)? According to the definition, g(x) is the least degree polynomial in the
code, i.e., the least degree polynomial satisfying g(α) = g(α3) = · · · = g(α2t−1). Now the coefficients of g(x)
are in GF (2), but the various powers of α are in the larger field GF (2m). Thus (see Appendix C) g(x) is
the minimal polynomial over GF (2) of the subset of A = {α, α3, · · · , α2t−1} of GF (2m). Hence if A∗ is
defined to be the set of all GF (2)- conjugates of elements in A, i.e. A∗ = {β2i : β ∈ A, i ≥ 0}, then

g(x) =
∏
β∈A∗

(x− β). (9.9)

We summarize these results in the following theorem.

Theorem 9.2. If we define the t-error correcting BCH code of length n = 2m − 1 by (9.7) or (9.8), then
the code is cyclic, with generator polynomial given by (9.9). Thus the dimension of the code is given by
n− deg(g), i.e., k = n− |A∗|, where A∗ is the set of GF (2)-conjugates of A = {α, α3, . . . , α2t−1} in GF (2m).

Example 9.1. Consider the 3-error correcting BCH code of length 15. Let α be a primitive root in GF (16);
then by Theorem 9.2, the generator polynomial is the minimal polynomial of the set A = {α, α3, α5}. The
conjugates of α are (α, α2, α4, α8); of α3: (α3, α6, α12, α9); of α5: (α5, α10). Hence

A∗ = {α, α2, α3, α4, α5, α6α8, α9, α10, α12},

and so by Theorem 9.2, the dimension is 15− 10 = 5.

To actually compute g(x) for this example, we need a concrete realization of GF (16). Let’s represent
GF (16) according to powers of a primitive root α that satisfies α4 = α+1. In Table 9.1 the element αj is given
as a polynomial of degree ≤ 3 in a α; for example, α11 = α3 +α2 +α. The generator polynomial g(x) is the
product of the minimal polynomials of α, α3, and α5. The minimal polynomial of α is by definition x4+x+1.
The minimal polynomial of α3 — call it g3(x) = g30+g31x+g32x

2+g33x
3+g34x

4 — must satisfy g3(α3) = 0.
From Table 9.1 this is equivalent to g30[0001] + g31[1000] + g32[1100] + g33[1010] + g34[1111] = [0000]. The

* This ordering is still not unique, since there are many (to be exact, φ(2m−1)) primitive roots in GF (2m).

4

only nontrivial solution to this set of 4 homogeneous equations in the 5 unknowns is [g30, g31, g32, g33, g34] =
[11111], and so g3(x) = x4 + x3 + x2 + x + 1. Similarily, g5(x) = g50 + g51x + g52x

2 (we already know that
α5 has only two conjugates, α5 and α10) turns out to be x2 + x+ 1. Hence the generator polynomial of the
three-error-correcting BCH code of length 15 is g(x) = (x4 + x + 1)(x4 + x3 + x2 + x + 1)(x2 + x + 1) =
x10+x8+x5+x4+x2+x+1. Similarly, the parity-check polynomial is h(x) = (x15+1)/g(x) = x5+x3+x+1.
(We emphasize, however, that g(x) depends on the particular realization of GF (16) given in Table 9.1. See
Problem 9.6.)

i αi

0 0000
1 0010
2 0100
3 1000
4 0011
5 0110
6 1100
7 1011
8 0101
9 1010

10 0111
11 1110
12 1111
13 1101
14 1001

Table 9.1. The field GF (16) represented
as powers of α, where α4 = α + 1.

Let us summarize what we know about BCH codes so far: they can be designed to correct any desired
number of errors up to about half the code’s block length (Theorem 9.1), and they have a very nice algebraic
characterization as cyclic codes. However, their practical importance is due almost wholly to the fact that
they have a remarkably efficient decoding algorithm. We will begin our discussion of this algorithm in the
following section.

5

9.3. Decoding BCH codes, Part I: The Key Equation.

In this section, we will derive the so-called key equation, which is the basis for the BCH decoding algorithm.
Before we get to the key equation, however, we must present some preliminary material. We shall present
this material more generally than is strictly necessary, so that we can refer to it later, when we discuss the
decoding erasures as well as errors, both for BCH codes and for Reed-Solomon codes.

Thus let F be a field which contains a primitive nth root of unity α.* We first note that

1− xn =
n−1∏
i=0

(1− αix). (9.10)

This is because the polynomials on both sides of (9.10) have degree n, constant term 1, and roots α−i, for
i = 0, 1, . . . , n− 1. Next, let

V = (V0, V1, . . . , Vn−1)

be an n dimensional vector over F , and let

V̂ = (V̂0, V̂1, . . . , V̂n−1)

be its discrete Fourier transform (DFT), whose components are defined as follows.

V̂j =
n−1∑
i=0

Viα
ij , for j = 0, 1, . . . , n− 1. (9.11)

We sometimes call the Vi’s the “time domain” coordinates, and the V̂j ’s the “frequency domain” coordinates,
of the vector V. The time domain components can be recovered from the frequency domain components via
the so-called “inverse DFT”:

Vi =
1
n

n−1∑
j=0

V̂jα
−ij , for i = 0, 1, . . . , n− 1. (9.12)

(In (9.12) the “1/n” factor in front of the sum must be interpreted with some care, in view of the possibly
finite characteristic of F . The number “n” is the sum 1 + 1 + · · · + 1 (n terms), and “1/n” is the inverse
of this number. For example, if F has characteristic 2 and n is odd, then 1/n = 1. Apart from this small
subtlety, however, the proof of (9.12) is identical to the usual proof of the inverse DFT formula, and we leave
it as Problem 9.8.) If we interpret the components of V and V̂ as the coefficients of polynomials, i.e., if we
define generating functions V (x) and V̂ (x) by

V (x) = V0 + V1x+ · · ·+ Vn−1x
n−1 (9.13)

and
V̂ (x) = V̂0 + V̂1x+ · · ·+ V̂n−1x

n−1, (9.14)

then the DFT and IDFT relationships (9.11) and (9.12) become

V̂j = V (αj) (9.15)
and

Vi =
1
n
V̂ (α−i). (9.16)

There are many interesting and useful relationships between the time domain and frequency domain coor-
dinates of a given vector. One of them is that a “phase shift” in the time domain corresponds to a “time

* If the characteristic of F is finite, we assume that the characteristic does not divide n.

6

shift” in the frequency domain, in the following sense. If we multiply the ith component of V by αµi, i.e., if
we define a new vector Vµ as

Vµ = (V0, V1α
µ, . . . , Vn−1α

µ(n−1)) (9.17)

then its DFT is

V̂µ = (V̂µ, V̂µ+1, . . . , V̂µ+n−1), (9.18)

where in (9.18) the subscripts are taken mod n. We leave the proof of (9.18) as Problem 9.10.
As coding theorists, we are always interested in the weight of a vector. The following classical theorem

tells us how to estimate the weight in the time domain if we know something about the vector in the frequency
domain.

Theorem 9.3. (The BCH Argument). Suppose V is a nonzero vector with the property that V̂ has m

consecutive 0 components, i.e., V̂j+1 = V̂j+2 = · · · = V̂j+m = 0. Then the weight of V is ≥ m+ 1.

Proof: Let Ŵ be the vector obtained by cyclically shifting V̂ until its m consecutive 0s appear in positions

n − m,n − m + 1, . . . , n − 1, i.e., Ŵ = [∗ ∗ · · · ∗
m︷ ︸︸ ︷

00 · · · 0]. By (9.17) and (9.18), Ŵ is the DFT of a
vector W whose weight is the same as the weight of V. However, by (9.12), Wi = 1

nŴ (α−i), where
Ŵ (x) = Ŵ0 + Ŵ1x+ · · ·+ Ŵn−m−1x

n−m−1. Since Ŵ (x) is a nonzero polynomial of degree ≤ n−m− 1, it
follows that Wi = 0 for at most n − i −m values of i, and so Wi �= 0 for at least m + 1 values of i. Thus
wt(V) = wt(W) ≥ m+ 1.

We are almost ready to introduce the key equation, but we need a few more definitions. With the vector
V fixed, we define its support set I as follows:

I = {i : 0 ≤ i ≤ n− 1 and Vi �= 0}. (9.19)

We now define several polynomials associated with V, the locator polynomial, the punctured locator poly-
nomials, and the evaluator polynomial. The locator polynomial for V is

σV(x) =
∏
i∈I

(1− αix). (9.20)

For each value of i ∈ I we also define the ith punctured locator polynomial σ(i)
V (x):

σ
(i)
V (x) = σV(x)/(1− αix)

=
∏
j∈I
j �=i

(1− αjx). (9.21)

Finally, we define the evaluator polynomial for V as

ωV(x) =
∑
i∈I

Viσ
(i)
V (x). (9.22)

We will need the following lemma later on, for example, in Sections 9.5 and 9.7 when we discuss the
RS/BCH decoding algorithms.

Lemma 9.1. gcd(σV(x), ωV(x)) = 1.

Proof: By (9.20), gcd(σV(x), ωV(x)) =
∏
i∈J(1 − αix), where J = {i ∈ I : ωV(α−i) = 0}. By (9.22),

if i ∈ I, ωV(α−i) = Viσ
(i)
V (α−i). But by the definition of I, if i ∈ I, Vi �= 0, and by (9.21), σ(i)

V (α−i) =∏
j∈I
j �=i

(1− αj−i) �= 0. Hence the set J is empty, and so gcd(σV(x), ωV(x)) = 1, as asserted.
We now come to the promised “key equation.”

7

Theorem 9.4. (The Key Equation). For a fixed vector V, the polynomials V̂ (x), σV(x), and ωV(x) satisfy

σV(x)V̂ (x) = ωV(x)(1− xn). (9.23)

Proof: Using the definitions (9.11), (9.14) and (9.22), we find that

V̂(x) =
∑
i∈I

Vi

n−1∑
j=0

xjαij . (9.24)

According to (9.21), σV(x) = σ
(i)
V (x)(1− αix) for all i ∈ I, and so from (9.24) we have

σI(x)V̂(x) =
∑
i∈I

Viσ
(i)
V (x)(1− αix)

n−1∑
j=0

xjαij

=
∑
i∈I

Viσ
(i)
V (x)(1− xn)

= ωV(x)(1− xn).

The following Corollary to Theorem 9.3 tells us how to reconstruct the nonzero components of V from
σV(x) and ωV(x). It involves the formal derivative σ′V(x) of the polynomial σV(x). (See Problem 9.17).

Corollary 9.1. . For each i ∈ I, we have

Vi = −αiωV(α−i)
σ′V(α−i)

. (9.25)

Proof: If we differentiate the the key equation (9.23) we get

σV(x)V̂ ′(x) + σ′V(x)V̂ (x) = ωV(x)(−nxn−1) + ω′V(x)(1− xn). (9.26)

Note that if x = α−i with i ∈ I, from (9.20) and (9.10) we see that both σV(x) and 1− xn vanish. Thus if
x = α−i, (9.26) becomes

σ′V(α−i)V̂ (α−i) = −nαiωV(α−i). (9.27)

But from (9.16), V̂ (α−i) = nVi. This fact, combined with (9.27), completes the proof.
Corollary 9.1 says, in effect, that the time-domain coordinates of V can be recovered from σV(x) and

ωV(x). The next Corollary says that if the first few frequency-domain coordinates of V are known, the rest
can be recovered from σV(x) alone, via a simple recursion. In the statement of the Corollary, we suppose
that the coefficients of σV(x) are given by

σV(x) = 1 + σ1x+ · · ·+ σdx
d.

Corollary 9.2. For j = d, d+ 1, . . . , n− 1, we have

V̂j = −
d∑
i=1

σiV̂j−i. (9.28)

Proof: The key equation implies that

σV(x)V̂ (x) ≡ 0 (mod 1− xn). (9.29)

What (9.29) says is that for each j in the range 0 ≤ j ≤ n − 1, the coefficient of xj in the polynomial
σV(x)V̂ (x) mod (1 − xn) is 0. But this coefficient is

∑d
i=0 σiV̂(j−i) mod n, so that for each j in the range

0 ≤ j ≤ n− 1, we have
d∑
i=0

σiV̂j−i = 0, (9.30)

where subscripts are to be taken mod n and we have defined σ0 = 1. But now the equations (9.30) for
j = d, d+ 1, . . . , n− 1 are equivalent to the equations (9.28).

8

Example 9.2. We illustrate this material using the field GF (16), in which the nonzero elements are repre-
sented by the powers of a primitive root α satisfying the equation α4 = α+ 1. We consider the vector

V = (0, 0, α2, 0, 0, 0, 0, α7, 0, 0, 0, 0, 0, 0, 0).

Then the polynomial V (x) defined in (9.13) is

V (x) = α2x2 + α7x7.

Using (9.11) or (9.15) we can calculate the DFT of V:

V̂ = (α12, α9, 0, α3, 1, 0, α9, α6, 0, 1, α12, 0, α6, α3, 0).

Thus V̂ (x), as defined in (9.14), is

V̂ (x) = α12 + α9x+ α3x3 + x4 + α9x6 + α6x7 + x9 + α12x10 + α6x12 + α3x13

= (α12 + α9x)(1 + α6x3 + α12x6 + α3x9 + α9x12)

= (α12 + α9x)
1 + x15

1 + α6x3

= α12 1 + x15

1 + α12x+ α9x2
.

(9.31)

The support set for V is I = {2, 7}, and so the locator polynomial for V is

σV(x) = (1 + α2x)(1 + α7x) = 1 + α12x+ α9x2. (9.32)

The polynomials σ(i)
V (x) defined in (9.21) are in this case

σ
(2)
V = (1 + α7x), σ

(7)
V = (1 + α2x).

The evaluator polynomial ωV(x) defined in (9.22) is

ωV(x) = α2(1 + α7x) + α7(1 + α2x) = α12. (9.33)

Combining (9.31), (9.32), and (9.33), we see that the key equation indeed holds in this case. To check
Corollary 1, we note that from (9.32), σ′V(x) = α12 = ωV(x), so that Corollary 1 becomes simply Vi = αi,
for i ∈ I, which is true (V2 = α2 and V7 = α7). Finally, note that Corollary 2 says in this case that

V̂j = α12V̂j−1 + α9V̂j−2 for j = 2, 3, . . . , 14,

so that (using V̂0 = α12 and V̂1 = α9 as initial conditions)

V̂2 = α12 · α9 + α9 · α12 = 0

V̂3 = α12 · 0 + α9 · α9 = α3

V̂4 = α12 · α3 + α9 · 0 = 1
...

V̂14 = α12 · α3 + α9 · α6 = 0,

which agrees with our direct calculation of V̂.

With the preliminary material about the key equation out of the way, we can begin a serious discussion
of the problem of decoding BCH codes. Suppose then that C = (C0, C1, . . . , Cn−1) is a codeword from the

9

t-error correcting BCH code of length n defined by (9.6), which is transmitted over a noisy channel, and that
R = (R0, R1, . . . , Rn−1) is received. (We assume that the components of R are 0’s and 1’s, i.e., are elements
of GF (2).) We define the error pattern as the vector E = (E0, E1, . . . , En) = R − C. The decoder’s first
step is to compute the syndromes S1, S2, . . . , S2t, which are defined by

Sj =
n−1∑
i=0

Riα
ij , for j = 1, 2, . . . , 2t. (9.34)

Since R = C + E, and C is a codeword, it follows that

Sj =
n−1∑
i=0

Eiα
ij , for j = 1, 2, . . . , 2t, (9.35)

so that, as expected, the syndromes depend only on the error pattern and not on the transmitted codeword.
Note also that on comparing (9.35) with (9.11), we see that Sj is the jth component of the DFT of the error
pattern; in other words, the syndrome lets us see 2t consecutive components (the first, second,. . . , 2tth) of
Ê. If we now define the twisted error pattern V as

V = (E0, E1α,E2α
2, . . . , En−1α

n−1), (9.36)

it follows from (9.17) and (9.18) that (S1, S2, . . . , S2t) = (V̂0, V̂1, . . . , V̂2t).
The key equation applies to the vector V defined in (9.36); however, since we only know the the first 2t

coefficients of V̂ (x) (i.e., V̂0, V̂1, . . . , V̂2t), we focus instead on the key equation reduced mod x2t:

σ(x)V̂ (x) ≡ ω(x) (mod x2t). (9.37)

(In (9.37) we have dropped the subscript V’s on σ(x) and ω(x).) From (9.19) and (9.36) we see that the
support set I for V is the set of indices such that Ei �= 0, i.e., the set of error locations. For this reason, the
polynomial σ(x) in (9.37) is called the error locator polynomial. Similarly, the polynomial ω(x) in (9.37) is
called the error evaluator polynomial. Equation (9.37) is called the BCH key equation.

Now observe that if, given the syndrome of the received word R, or equivalently, V̂ (x) mod x2t, we
could somehow “solve” the BCH key equation (9.37) for the polynomials σ(x) and ω(x), we could then easily
recover the error pattern E, and thus also the transmitted codeword C = R − E. We could do this by
first computing the n values σ(α−i), for i = 0, 1, . . . , n − 1, which would identify the support set I of V
defined in (9.19). Then the nonzero components of V could be computed by (9.25), and this would give
us the complete vector V, or equivalently, E (see (9.36)). Alternatively, knowing (V̂0, V̂1, . . . , V̂2t), we could
complete the vector V̂ via (9.28), and then recover V via an inverse DFT. In the next section, we will see
that there is a remarkably efficient algorithm for computing σ(x) and ω(x) from the BCH key equation,
provided we make the additional assumption that the actual number of errors that occurred is at most t.
(This assumption is necessary, since a t error-correcting BCH code is not designed to correct more than t
errors.)

10

9.4. Euclid’s Algorithm for Polynomials

This section does not deal directly with the problem of decoding BCH codes. The reader should bear in mind,
however, that our goal is to solve the BCH key equation (Eq. 9.37)) for σ(x) and ω(x), given V̂ (x) mod x2t.

Throughout this section a(x) and b(x) will be fixed polynomials over a field F , with deg a(x) ≥ deg b(x).*
Later a(x) will be replaced by x2t, and b(x) by the syndrome polynomial S(x).

Euclid’s algorithm is a recursive procedure for finding the greatest common divisor (gcd for short) d(x)
of a(x) and b(x), and for producing an equation

u(x)a(x) + v(x)b(x) = d(x) (9.38)

that expresses d(x) as a linear combination of a(x) and b(x). The algorithm involves four sequences of
polynomials: (ui(x)), (vi(x)), (ri(x)), (qi(x)). The initial conditions are

u−1(x) = 1,
u0(x) = 0,

v−1(x) = 0,
v0(x) = 1,

r−1(x) = a(x),
r0(x) = b(x).

(9.39)

(q−1(x) and q0(x) are not defined). For i ≥ 1, qi(x) and ri(x) are defined to be the quotient and remainder,
respectively, when ri−2(x) is divided by ri−1(x):

ri−2(x) = qi(x)ri−1(x) + ri(x), deg ri ≤ deg ri−1. (9.40)

The polynomials ui(x) and vi(x) are then defined by

ui(x) = ui−2(x)− qi(x)ui−1(x), (9.41)
vi(x) = vi−2(x)− qi(x)vi−1(x). (9.42)

Since the degrees of the remainders ri are strictly decreasing, there will be a last nonzero one; call it rn(x).
It turns out that rn(x) is the gcd of a(x) and b(x), and furthermore that the desired equation expressing the
gcd as a linear combination of the original two polynomials (see Eq. (9.38)) is

un(x)a(x) + vn(x)b(x) = rn(x). (9.43)

Since this particular aspect of Euclid’s algorithm is not our main concern, we leave the proof of these facts
to Prob. 9.18b.

What is more interesting to us at present is the list shown in Table 9.2 of intermediate relationships
among the polynomials of Euclid’s algorithm. It is not difficult to prove these properties by induction on i;
see Prob. 9.18a.

Table 9.2. Properties of Euclid’s Algorithm

A. viri−1 − vi−1ri = (−1)ia 0 ≤ i ≤ n+ 1.
B. uiri−1 − ui−1ri = (−1)i+1b 0 ≤ i ≤ n+ 1.
C. uivi−1 − ui−1vi = (−1)i+1 0 ≤ i ≤ n+ 1.
D. uia+ vib = ri −1 ≤ i ≤ n+ 1
E. deg(ui) + deg(ri−1) = deg(b) 1 ≤ i ≤ n+ 1.
F. deg(vi) + deg(ri−1) = deg(a) 0 ≤ i ≤ n+ 1.

Example 9.3. Let F = GF (2), a(x) = x8, b(x) = x6 + x4 + x2 + x + 1. The behavior of Euclid’s algorithm
is given in Table 9.3.

* By convention the degree of the zero polynomial is −∞. This is done so that basic facts like deg(ab) =
deg(a)+deg(b), deg(a+ b) ≤ max(deg(a),deg(b)), etc., will hold even if one of a or b is the zero polynomial.

11

Table 9.3. An Example of Euclid’s Algorithm

i ui vi ri qi

−1 1 0 x8 · · ·
0 0 1 x6 + x4 + x2 + x+ 1 · · ·
1 1 x2 + 1 x3 + x+ 1 x2 + 1
2 x3 + 1 x5 + x3 + x2 x2 x3 + 1
3 x4 + x+ 1 x6 + x4 + x3 + x2 + 1 x+ 1 x

4 x5 + x4 + x3 + x2 x7 + x6 + x3 + x+ 1 1 x+ 1
5 x6 + x4 + x2 + x+ 1 x8 0 x+ 1

The i = 4 line of Table 9.3 shows that gcd(a(x), b(x)) = 1 (which is obvious anyway), and with
Property D from Table 9.2 yields the equation (x5 + x4 + x3 + x2)a(x) + (x7 + x6 + x3 + x + 1)b(x) = 1.
This example is continued in Example 9.4.

We now focus our attention on Property D in Table 9.2, which can be rewritten as

vi(x)b(x) ≡ ri(x) (mod a(x)). (9.44)

Using Property F and the fact that deg ri−1 ≥ deg ri, we get the estimate

deg vi + deg ri < deg a. (9.45)

The main result of this section (Theorem 9.4) is a kind of converse to (9.44) and (9.45). We begin with a
lemma.

Lemma 9.2. Suppose Euclid’s algorithm, as described above, is applied to the two polynomials a(x) and
b(x). Given two integers µ ≥ 0 and ν ≥ 0 with µ + ν = deg a− 1, there exists a unique index j, 0 ≤ j ≤ n,
such that:

deg(vj) ≤ µ, (9.46)
deg(rj) ≤ ν. (9.47)

Proof: Recall that deg ri is a strictly decreasing function of i until rn = gcd(a, b), and define the index j
uniquely by requiring

deg rj−1 ≥ ν + 1, (9.48)
deg rj ≤ ν. (9.49)

Then by Property F we also have

deg vj ≤ µ, (9.50)
deg vj+1 ≥ µ+ 1 (9.51)

Equations (9.49) and (9.50) show the existence of an index j satisfying (9.46) and (9.47); Eqs. (9.48) and
(9.51) show uniqueness.

The following theorem is the main result of this section.

Theorem 9.5. Suppose a(x), b(x), v(x) and r(x) are nonzero polynomials satisfying

v(x)b(x) ≡ r(x) (mod a(x)), (9.52)
deg v(x) + deg r(x) < deg a(x). (9.53)

12

Suppose further that vj(x) and rj(x), j = −1, 0, . . . , n+ 1, are the sequences of polynomials produced when
Euclid’s algorithm is applied to the pair (a(x), b(x)). Then there exists a unique index j, 0 ≤ j ≤ n, and a
polynomial λ(x) such that

v(x) = λ(x)vj(x), (9.54)
r(x) = λ(x)rj(x). (9.55)

Proof: Let j be the index satisfying (9.46) and (9.47) with ν = deg r , µ = deg a − deg r − 1. Thus
from (9.53) deg(v(x)) ≤ µ. Then according to (9.51) and (9.48), deg vj+1 ≥ µ + 1 ≥ deg v + 1, and
deg rj−1 ≥ ν + 1 = deg r+ 1. Hence if there is an index such that (9.54) and (9.55) hold, it must be unique.

Now rewrite Property D and Eq. (9.52) as follows:

uja+ vjb = rj , (9.56)
ua+ vb = r, (9.57)

where u is some unspecified polynomial. Multiply (9.56) by v and (9.57) by vj :

ujva+ vjvb = rjv, (9.58)
uvja+ vvjb = rvj . (9.59)

Together (9.58) and (9.59) imply rjv ≡ rvj (mod a). But by (9.47) and (9.53), deg(rjv) = deg rj +deg v ≤
ν + µ < deg a. Similarly, by (9.46) and (9.53), deg(rvj) = deg r + deg vj ≤ ν + µ < deg a. It follows that
rjv = rvj . This fact, combined with (9.58) and (9.59), implies that ujv = uvj . But since Property C
guarantees that uj and vj are relatively prime, this means that

u(x) = λ(x)uj(x),
v(x) = λ(x)vj(x),

for some polynomial λ(x). Then Equation (9.57) becomes λuja + λvjb = r; comparing this to Eq. (9.58),
we conclude that r(x) = λ(x)rj(x).

The results of this section will be used constantly in our forthcoming discussion of decoding algorithms for
BCH and Reed-Solomon codes. To facilitate these discussions, we now introduce the algorithmic procedure
“Euclid(a(x), b(x), µ, ν)”.

Definition. If (a(x), b(x)) is a pair of nonzero polynomials with deg a(x) ≥ deg b(x), and if (µ, ν) is a pair
of nonnegative integers such that µ+ ν = deg a(x)− 1, Euclid(a(x), b(x), µ, ν) is the procedure that returns
the unique pair of polynomials (vj(x), rj(x)) with deg vj(x) ≤ µ and deg rj(x) ≤ ν, when Euclid’s algorithm
is applied to the pair (a(x), b(x)).

The following theorem summarizes the results of this section.

Theorem 9.6. Suppose v(x) and r(x) are nonzero polynomials satisfying

v(x)b(x) ≡ r(x) (mod a(x)) (9.60)
deg v(x) ≤ µ (9.61)
deg r(x) ≤ µ, (9.62)

where µ and ν are nonnegative integers such that µ+ ν = deg r(x)− 1. Then if (vj(x), rj(x)) is the pair of
polynomials returned by Euclid(a(x), b(x), µ, ν), there is a polynomial λ(x) such that

v(x) = λ(x)vj(x) (9.63)
r(x) = λ(x)rj(x) (9.64)

Proof: Theorem 9.4 guarantees that there exists a unique index j such that (9.63) and (9.64) hold. Fur-
thermore the procedure Euclid(a(x), b(x), µ, ν) must return this pair, since by (9.63) and (9.64), deg vj(x) ≤
deg v(x) ≤ µ and deg rj(x) ≤ deg r(x) ≤ ν.

13

Example 9.4. Let a(x) = x8, b(x) = x6 + x4 + x2 + x+ 1, F = GF (2), as in Example 9.5. Using Table 9.2,
we can tabulate the output of Euclid for the eight possible pairs (µ, ν):

(µ, ν) Euclid(x8, x6 + x4 + x2 + x+ 1, µ, ν)

(0, 7) (1, x6 + x4 + x2 + x+ 1)
(1, 6) (1, x6 + x4 + x2 + x+ 1)
(2, 5) (x2 + 1, x3 + x+ 1)
(3, 4) (x2 + 1, x3 + x+ 1)
(4, 3) (x2 + 1, x3 + x+ 1)
(5, 2) (x5 + x3 + x2, x2)
(6, 1) (x6 + x4 + x3 + x2 + 1, x+ 1)
(7, 0) (x7 + x6 + x3 + x+ 1, 1)

Now suppose we wished to “solve” the congruence x6 +x4 +x2 +x+1)σ(x) ≡ ω(x) (mod x8), subject
to the restriction that deg σ(x) ≤ 3, degω(x) ≤ 4. Accordingg to Theorem 9.5, we invoke Euclid(x8, x6 +
x4 + x2 + x+ 1, 4, 3) which by the above table returns the pair (x2 + 1, x3 + x+ 1), so that all solutions to
the given problem are of the form σ(x) = λ(x)(x2 + 1), ω(x) = λ(x)(x3 + x + 1), with deg λ(x) ≤ 1. If we
further required gcd(σ(x), ω(x)) = 1, then the only solution would be σ(x) = x2 + 1, ω(x) = x3 + x + 1.

At this point the application of Theorem 9.4 to the problem of solving the key equation for BCH codes
should be apparent. In any event we spell it out in the next section.

14

9.5. Decoding BCH Codes, Part II: The Algorithms.
Let us recapitulate the BCH decoding problem, which we abandoned temporarily at the end of Section 9.3.
We are given a received vector R = (R0, R1, . . . , Rn−1), which is a noisy version of an unknown codeword
C = (C0, C1, . . . , Cn−1) from the t-error connecting BCH code defined by (9.7), i.e., R = C + E, where E
is the error pattern. Our goal is to recover C from R. The first step in the decoding process is to compute
the syndrome polynomial S(x), defined by

S(x) = S1 + S2 + · · ·+ S2tx
2t−1, (9.65)

where Sj = Σn−1
i=0 Riα

ij , for j = 1, 2, . . . , 2t. We saw at the end of Section 9.3 that S(x) = V̂ (x) mod x2t,
where V̂ (x) is the generating function for the Fourier transform of the vector V defined in (9.36), so that
the key equation (9.37) becomes

σ(x)S(x) ≡ ω(x) (mod x2t), (9.66)

where σ(x) is the error locator polynomial and ω(x) is the error evaluator polynomial.
The next step in the decoding process is to use Euclid’s algorithm, and in particular the procedure

Euclid(a(x), b(x), µ, ν) defined in Section 9.4, to solve the key equation for σ(x) and ω(x). This is possible,
since if the number of errors that actually occurred is ≤ t, then by (9.20) and (9.22),

deg σ(x) ≤ t

degω(x) ≤ t− 1,

and by Corollary 9.1, gcd(σ(x), ω(x)) = 1. Thus the hypotheses of Theorem 9.5 are met with a(x) = x2t,
b(x) = S(x), v(x) = σ(x), r(x) = ω(x), µ = t, ν = t− 1, so that if the procedure Euclid(x2t, S(x), t, t− 1) is
called it will return the polynomial pair (v(x), r(x)) where v(x) = λσ(x), r(x) = λω(x), and λ is a nonzero
scalar. The scalar λ can be determined by the fact that σ(0) = 1 (see (9.20)), i.e, λ = v(0)−1, and so

σ(x) = v(x)/v(0)

ω(x) = r(x)/v(0).

The final step in the decoding algorithm is to use σ(x) and ω(x) to determine the error pattern E =
(E0, E1, . . . , En−1), and hence the corrected codeword C = R−E. As we observed at the end of Section 9.3,
there are two ways to do this, which we shall call the time-domain approach and the frequency-domain
approach.

The time domain approach is based on the fact that

σ(x) =
∏
i∈I

(1− αix)

where I is the error locator set, i.e. I = {i : Ei �= 0} (see (9.20) and (9.36)). Thus in order to find the
error locations, one needs to find the reciprocals of the roots of the equation σ(x) = 0. Since there are
only n possibilities for the roots, viz., 1, α−1, α−2, . . . , α−(n−1), a simple “trial and error” algorithm can be
used to find E. Thus the so-called “time-domain completion” can be described by the following pseudocode
fragment. It takes as input σ(x) and produces the error vector (E0, E1, . . . , En−1).

/* Time Domain Completion */
{
for (i = 0 to n - 1)
{
if (σ(α−i) == 0)
Ei = 1;

else
Ei = 0;

}
}

15

A complete decoding algorithm using the time domain completion is shown in Figure 9.1. Note that
the error evaluator polynomial ω(x) is not needed — its significance will become apparent only when we
consider Reed-Solomon codes in the next section.

The frequency domain approach is based on Corollary 9.2, which says that the components of V̂ =
(V̂0, . . . , V̂n−1) can be computed recursively, via the formula V̂j =

∑d
i=1 σiV̂j−i, where σ(x) = 1 + σ1x +

· · · + σdx
d, provided at least d “initial values” of the vector V̂ are known. Since the syndrome provides 2t

components of V̂ viz., V̂1, V̂2, · · ·, V̂2t, and since Euclid(x2t, s(x), t, t−1) is guaranteed to return a polynomial
v(x) of degree ≤ t, the syndrome values S1, S2, . . . , S2t are more than enough to get the recursion started,
so that the following “frequency domain completion” will successfully calculate the error vector E:

/* Frequency Domain Completion */
{
for (j = 2t + 1 to n)

Sj =
∑d
i=1 σiSj−i;)

for (i= 0 to n-1)
Ei =

∑n−1
j=0 Sjα

−ij ;
}

A complete decoding algorithm using the frequency domain completion is shown in Figure 9.2.

/* ‘‘Time Domain’’ BCH Decoding Algorithm */
{
for (j = 1 to 2t)
Sj =

∑n−1
i=0 Riα

ij ;
S(x) = S1 + S2x+ · · ·+ S2tx

2t−1;

if (S(x) ==0)
print ‘‘no errors occurred’’;

else
{
Euclid (x2t, S(x), t, t− 1);
σ(x) = v(x)/v(0);
for (i = 0 to n-1)
{
if (σ(α−i) == 0)
Ei = 1;

else
Ei = 0;

}
for (i = 0 to n-1)
Ĉi = Ri + Ei;

print ‘‘corrected codeword:(Ĉ0, Ĉ1, . . . , Ĉn−1)’’;
}

}
Figure 9.1. A Time Domain BCH Decoding Algorithm

16

/* ‘‘Frequency Domain’’ BCH Decoding Algorithm */
{
for (j = 1 to 2t)
Sj =

∑n−1
i=0 Riα

ij ;
S(x) = S1 + S2x+ · · ·+ S2tx

2t−1;

if (S(x) == 0)
print ‘‘no errors occurred’’;

else
{
Euclid (x2t, S(x), t, t− 1);
σ(x) = v(x)/v(0);
for (j = 2t +1 to n)

Sj =
∑d
i=0 σiSj−i;

for (i = 0 to n - 1)
Ei =

∑n−1
j=0 Sjα

−ij ;
for (i = 0 to n-1)
Ĉi = Ri + Ei;

print ‘‘corrected codeword:(Ĉ0, Ĉ1, . . . , Ĉn−1)’’;
}

}
Figure 9.2. A Frequency Domain BCH Decoding Algorithm

Example 9.5. Consider the 3-error correcting BCH code of length 15, with generator polynomial g(x) =
x10 + x8 + x5 + x4 + x2 + x+ 1 (see Example 9.1). Suppose the vector R = (110000110110101) is received.
Then the syndrome components Sj are given by Sj = 1 +αj +α6j +α7j +α9j +α10j +α12j +α14j , where α
is a primitive root in GF (16). Using Table 9.1, together with the fact that S2j = S2

j (Problem 9.17), we find
that S1 = α12, S2 = α9, S3 = 0, S4 = α3, S5 = 1, S6 = 0, and so S(x) = x4 + α3x3 + α9x + α12. Applying
Euclid’s algorithm to the pair (x6, S(x)), we get the following table:

i ui vi ri qi

−1 1 0 x6 −−
0 0 1 x4 + α3x3 + α9x+ α12 −−
1 1 x2 + α3x+ α6 α3 x2 + α3x+ α6

Thus the procedure Euclid (x6, S(x), 3, 2) returns the pair (x2 + α3x + α6, α3). Multiplying both of these
polynomials by α−6, we therefore find that σ(x) = 1 + α12x + α9x2, and ω(x) = α12. If we choose the
time domain completion, we find that σ(α−i) = 0 for i = 2 and 7, so that the error pattern is E =
[00100001000000], and the corrected codeword is Ĉ = [111000100110101]. On the other hand, if we choose the
frequency domain completion, we use the initial conditions S1 = α12, S2 = α9, S3 = 0, S4 = α3, S5 = 1, S6 = 0
and the recursion Sj = α12Sj−1 + α9Sj−2 to complete the syndrome vector, and find

S = (S0, S1, . . . , S15) = (0, α12, α9, 0, α3, 1, 0, α9, α6, 0, 1, α12, 0, α6, α3).

Performing an inverse DFT on the vector S we find that E = [00100001000000], and Ĉ = [111000100110101]
as before.

The algorithms in Figures 9.1 and 9.2 will work perfectly if the number of errors that occurs is no more
than t. If, however, more than t errors occur, certain problems can arise. For example, the procedure “Euclid
(x2t, S(x), t, t−1)” could return a polynomial v(x) with v(0) = 0, thereby causing a division by 0 in the step
“σ(x) = v(x)/v(0)”. Also, the decoder output Ĉ = (Ĉ0, Ĉ1, . . . , Ĉn−1) may turn out not to be a codeword.
Therefore in any practical implementation of the decoding algorithms, it will be necessary to test for these
abnormal conditions, and print a warning, like “more than t errors” if they occur.

17

9.6. Reed-Solomon Codes.
In the first five sections of this chapter we have developed an elaborate theory for BCH codes. They
are multiple error-correcting linear codes over the binary field GF(2), whose decoding algorithm requires
computations in the larger field GF(2m). Thus for BCH codes there are two fields of interest: the codeword
symbol field GF (2), and the decoder’s computation field GF (2m).

It turns out that almost the same theory can be used to develop another class of codes, the Reed-Solomon
codes (RS codes for short). The main theoretical difference between RS codes and BCH codes is that for RS
codes, the symbol field and the computation field are the same. The main practical difference between the
two classes of codes is that RS codes lend themselves naturally to the transmission of information characters
other than bits. In this section we will define and study Reed-Solomon codes.

Thus let F be any field which contains a primitive nth root of unity α.∗ If r is a fixed integer between
0 and n, the set of all vectors C = (C0, C1, . . . , Cn−1) with components in F such that

n−1∑
i=0

Ciα
ij = 0, for j = 1, 2, . . . , r (9.67)

is called a Reed-Solomon code of length n and redundancy r over F . The vectors C belonging to the code
are called its codewords. The following theorem gives the basic facts about RS codes.

Theorem 9.7. The code defined by (9.67) is an (n, n − r) cyclic code over F with generator polynomial
g(x) =

∏r
j=1(x− αj), and minimum distance dmin = r + 1.

Proof: Let C = (C0, C1, . . . , Cn−1) be an arbitrary vector of length n over F and let C(x) = C0 + C1x +
· · · + Cn−1x

n−1 be corresponding the generating function. Then (9.67) says that C is a codeword if and
only if C(αj) = 0, for j = 1, 2, . . . , r, which is the same as saying that C(x) is a multiple of g(x) =
(x − α)(x − α2) · · · (x − αr). But since xn − 1 =

∏n
j=1(x − αj), it follows that g(x) is a divisor of xn − 1,

and so by Theorem 8.3b the code is an (n, n− r) cyclic code with generator polynomial g(x). To prove the
assertion about dmin, observe that (9.67) says that if Ĉ = (Ĉ0, Ĉ1, . . . , Ĉn−1) is the DFT of a codeword, then
Ĉ1 = Ĉ2 = · · · = Ĉr = 0 (cf. Eq. (9.11)). Thus by the BCH argument (Theorem 9.3), the weight of any
nonzero codeword is ≥ r+ 1. On the other hand, the generator polynomial g(x) = xr + gr−1x

r−1 + · · ·+ g0,
when viewed as a codeword, has weight ≤ r + 1. Thus dmin = r + 1 as asserted.

Example 9.6. Consider the (7,3) Reed-Solomon code over GF(8). If α is a primitive root in GF(8) satisfying
α3 = α+ 1, the generator polynomial for the code is g(x) = (x− α)(x− α2)(x− α3)(x− α4) = x4 + α3x3 +
x2 + αx + α3. If g(x) is viewed as a codeword, it is [α3, α, 1, α3, 1, 0, 0], which is of weight 5, the minimum
weight of the code.

We note that the (7, 3) RS code over GF (8) in Example 9.6 has dmin = 5, whereas the (7,3) code over
GF(2) given in Example 8.2 (and elsewhere in Chapter 8) has only dmin = 4. The following theorem shows
that for a given n and k, RS codes have the largest possible dmin, independent of the field F .

Theorem 9.8. (The Singleton Bound) If C is an (n, k) linear code over a field F , then dmin ≤ n− k + 1.

Proof: We begin by recalling that if T is a linear transformation mapping a finite-dimensional vector space
U to another vector space V , then

rank(T) + nullity(T) = dim(U) (9.68)

We apply this to the linear transformation T mapping the code C to the space F k−1 by projecting each
codeword onto the first k − 1 coordinates:

T (C0, C1, . . . , Cn−1) = (C0, C1, . . . , Ck−2).

* In almost, but not all, applications, the field F will be GF (2m) for some m ≥ 1. However, the underlying
theory goes through equally well for any field, finite or not, and we shall make no unnecessary restrictions
in F .

18

We know that rank(T) ≤ k−1, since the image F k−1 has dimension k−1. Also, dim(C) = k by assumption.
Thus (9.68) implies that nullity(T) ≥ 1. Thus there exists at least one nonzero codeword C such that
T (C) = 0. Such a codeword has at least k− 1 zero components, and so has weight at most n− k+ 1.

Theorem 9.8 says that dmin ≤ n − k + 1 for any (n, k) linear code. On the other hand, Theorem 9.7
says that dmin = n− k+ 1 for any (n, k) Reed-Solomon code, and so Reed-Solomon codes are optimal in the
sense of having the largest possible minimum distance for a given length and dimension. There is a special
name given to linear codes with dmin = n−k+1; they are called maximum distance separable (MDS) codes.
(Some other MDS codes are described in Problems 9.23–25.) All MDS codes share some very interesting
mathematical properties; among the most interesting is the following, called the interpolation property of
MDS codes.

Theorem 9.9. Let C be an (n, k) MDS code over the field F , and let I ⊆ {0, 1, . . . , n− 1} be any subset of
k coordinate positions. Then for any set {αi : i ∈ I} of k elements from F , there exists a unique codeword
C such that Ci = αi for all i ∈ I.

Proof: We consider the linear transformation PI mapping the code C to F k by projecting each codeword
onto the index set I; i.e., PI(C0, C1, . . . , Cn−1) = (Ci1 , Ci2 , . . . , Cik), where I = {i1, i2, . . . , ik}. Applying
(9.68), which in this case says that rank(PI) + nullity(PI) = dim(C) we see that dim(C) = k, since C is a
k-dimensional code. Also, nullity(PI) = 0, since if there were a nonzero codeword C with PI(C) = 0, that
codeword would have weight at most n− k, contradicting the fact that C is an MDS code. Hence by (9.68)
rank(PI) = k, and so the mapping PI : C → F k is nonsingular, i.e. one-to-one and onto. Thus every vector
in F k appears exactly once as the projection of a codeword onto I, which is what the theorem promises.

We summarize the result of Theorem 9.9 by saying that any subset of k coordinate positions of a k-
dimensional MDS code is an information set (see also Problem 7.13). The proof we have given is short but
nonconstructive; however, for RS codes there is an efficient interpolation algorithm, which is closely related
to the Lagrange interpolation formula of numerical analysis. The next theorem spells this out.

Theorem 9.10. Consider the (n, k) Reed-Solomon code over the field F defined by (9.67), where k = n− r.
There is a one-to-one correspondence between the codewords C = (C0, C1, . . . , Cn−1) of this code, and the
set of all polynomials P (x) = P0 + P1x+ · · ·+ Pk−1x

k−1 of degree k − 1 or less over F , given by

Ci = α−i(r+1)P (α−i).

Thus apart from the scaling factors α−i(r+1), the components of a given RS codeword are the values of a
certain (k − 1)st degree polynomial.

Proof: Let C = [C1, . . . , Cn−1] be a fixed codeword. We define a “twisted” version of C, called D =
[D1, . . . , Dn−1], by

Di = α−i(r+1)Ci, for i = 0, 1, . . . , n− 1. (9.69)

Since by (9.67) we have Ĉ1 = Ĉ2 = · · · = Ĉr = 0, it follows from (9.17) and (9.18) that D̂n−r = · · · =
D̂n−1 = 0. Thus the DFT polynomial for D, denoted by D̂(x), is a polynomial of degree n− r − 1 = k − 1
or less:

D̂(x) = D̂0 + D̂1x+ · · ·+ D̂k−1x
k−1.

Let us define the polynomial P (x) as follows:

P (x) =
1
n
D̂(x).

Then by (9.16) we have Di = P (α−i), for i = 0, 1, . . . , n − 1. Combining this with (9.69), we obtain
Ci = α−i(r+1)P (α−i), which is what we wanted.

The following Example illustrates Theorem 9.10.

19

Example 9.7. Consider the (7,3) RS code described in Example 9.6. According to Theorem 9.9, there is a
unique codeword C such that C1 = α3, C4 = α, and C6 = α4. Let us construct this codeword.

We begin by observing that if I = {1, 4, 6}, Theorem 9.9 guarantees, in essence, the existence of a 3 x
7 generator matrix for C of the form

G146 =




0 1 2 3 4 5 6
∗ 1 ∗ ∗ 0 ∗ 0
∗ 0 ∗ ∗ 1 ∗ 0
∗ 0 ∗ ∗ 0 ∗ 1




where the *’s are unknown elements of GF(8) which must be determined. Once G146 is known, the desired
codeword C is given by C = [α3, α, α4] ·G146. So let’s construct the three rows of G146, which we shall call
C1, C4, and C6.

By Theorem 9.9, any codeword C from the (7,3) RS code can be represented as Ci = α−5iP (α−i),
where P (x) = P0 + P1x + P2x

2 is a polynomial of degree 2 or less. Thus for example, if P1(x) denotes the
polynomial corresponding to the first row C1 of G146, we have

P1(α−1) = α5, P1(α−4) = 0, P1(α−6) = 0. (9.70)

It follows from the conditions P1(α−4) = P1(α−6) = 0 in (9.65) that P (x) = A(1 + α4x)(1 + α6x) for
some constant A, which can be determined by the condition P1(α−1) = α5. Indeed P1(α−1) = α5 implies
A(1 + α3)(1 + α5) = α5, i.e., A = α5/(1 + α3)(1 + α5) = 1. Thus P1(x) = (1 + α4x)(1 + α6x), and so

C1 = [P1(1), α2P1(α−1), α4P1(α−2), α6P1(α−3), α1P1(α−4), α3P1(α−5), α5P1(α−6)]

= [1, 1, α, α3, 0, α, 0]

Similarly, if P4(x) and P6(x) denote the quadratic polynomials corresponding to the rows C4 and C6 of the
generator matrix G146, then we find that P4(x) = α2(1 + αx)(1 + α6x) and P6(x) = α6(1 + αx)(1 + α4x).
Thus we compute

C4 = [1, 0, α6, α6, 1, α2, 0]

C6 = [1, 0, α4, α5, 0, α5, 1].

Combining C1,C4, and C6, we find that the generator matrix G146 is

G146 =


 1 1 α α3 0 α 0

1 0 α6 α6 1 α2 0
1 0 α4 α5 0 α5 1


 ,

and so, finally, the unique codeword C with C1 = α3, C4 = α,C6 = α4 is

C = [α3, α, α4] ·G146 = [α5, α3, α6, 0, α, 1, α4].

This concludes our theoretical discussion of RS codes; now let’s consider the practical issues of encoding
and decoding them.

Since by Theorem 9.7, an (n, k) RS code is cyclic, it can be encoded using the shift-register techniques
developed in Chapter 8. In particular, the general encoding circuit of Figure 8.5(a) can be used. However,
since a RS code is defined over an arbitrary field F – which in practice will never be the binary field GF (2)
(Problem 9.24) – the three basic components (flip-flops, adders, and multipliers), will typically not be “off
the shelf” items. Although the design of these components over the important fields GF (2m) is an important
and interesting topic, it is beyond the scope of this book, and we will conclude our discussion of RS encoders

20

+ + + +

first 3 ticks closed
last 4 ticks open

first 3 ticks down
last 4 ticks up

IN

OUT

a^3 a 1 a^3

Figure 9.3. A systematic shift-register encoder for the (7,3)
RS code over GF(8) with g(x) = x4 + α3x3 + x2 + αx + α3.

with Figure 9.3, which shows a systematic shift-register encoder for the (7,3) RS code over GF (8) with
g(x) = x4 + α3x3 + x2 + αx+ α3 (see Examples 9.8 and 9.9).

We turn now to the problem of decoding RS codes, which turns out to be quite similar to the decoding
of BCH codes. In view of the similarity of their definitions (compare (9.7)) with (9.67)), this should not be
surprising.

Let us begin by formally stating the RS decoding problem. We are given a received vector R =
(R0, R1, . . . , Rn−1), which is a noisy version of an unknown codeword C = (C0, C1, . . . , Cn−1) from the
(n, k) RS code defined by (9.67), i.e., R = C + E, where E is the error pattern. Since by Theorem 9.7,
dmin = r + 1, we cannot hope to correctly identify C unless wt(E) ≤ �r/2�, and so for the rest of the
discussion we shall let t = �r/2�, and assume that wt(E) ≤ t.

The first step in the decoding process is to compute the syndrome polynomial

S(x) = S1 + S2x+ · · ·+ Srx
r, (9.71)

where Sj =
∑n−1
i=0 Riα

ij , for j = 1, 2, . . . , r. By the results of Section 9.3, if we define the “twisted error
pattern” by

V = (E0, E1α,E2α
2, . . . , En−1α

n−1),

then S(x) = V̂ (x) modxr, and the key equation (9.23), reduced modxr, becomes

σ(x)S(x) ≡ w(x)(modxr),

where σ(x) is the locator polynomial, and w(x) is the evaluator polynomial, for the vector V.
At this point the decoding problem is almost exactly the same as it was for BCH codes as described

in Section 9.5. In particular, if the procedure Euclid(xr, S(x), t, t − 1) is called, it will return the pair of
polynomials (v(x), r(x)), where v(x) = λσ(x) and r(x) = λω(x), for some nonzero constant λ.

The final step in the decoding algorithm is to use σ(x) and ω(x) to determine the error pattern E =
(E0, E1, . . . , En−1), and hence the original codeword C = R − E. As with BCH codes, there are two
essentially different ways to do this, the time domain approach and the frequency domain approach.

The time domain approach for RS decoding is similar to the time domain approach for BCH decoding,
with one important exception. For BCH codes, when the errors are located, their values are immediately
known. This is because BCH codes are binary, so that Ei = 0 or 1 for all i. Thus if there is an error in

21

position i, i.e., Ei �= 0, then necessarily Ei = 1. However, for RS codes, the Ei’s lie in an arbitrary field
F , so that simply knowing that Ei �= 0 is not enough to evaluate Ei. In order to evaluate an error whose
location is known, we use Corollary 9.1, which says that if Ei �= 0, i.e., σ(α−i) = 0, then Vi = αiEi =
−αiω(α−i)/σ′(α−i), i.e.,

Ei = − ω(α−i)
σ′(α−i)

. (9.72)

Thus the time domain completion of the RS decoding algorithm can be written as follows:

/* Time Domain Completion */
{
for (i = 0 to n - 1)
{

if (σ(α−i) == 0)
Ei = −ω(α−i)/σ′(α−i);

else
Ei = 0;

}
}

A complete time domain decoding algorithm for RS codes is shown in Figure 9.4.

/*Time Domain RS Decoding Algorithm*/
{
for (j = 1 to r)
Sj =

∑n−1
i=0 Riα

ij;
S(x) = S1 + S2x+ · · ·+ Srx

r−1;
if (S(x) = = 0)
print ‘‘no errors occurred’’;

else
{
Euclid(xr, S(x), t, t− 1);
σ(x) = v(x)/v(0);
ω(x) = r(x)/v(0);
for (i = 0 to n - 1)
{
if (σ(α−i) == 0
Ei = −ω(α−i)/σ′(α−i);

else
Ei = 0;

}
for (i = 0 to n - 1)
Ĉi = Ri − Ei;

print ‘‘corrected codeword: [Ĉ0, Ĉ1, . . . , Ĉn−1]’’;
}

}

Figure 9.4. A Time Domain RS Decoding Algorithm

The frequency domain approach to RS decoding is nearly identical to the frequency domain approach
to BCH decoding, since the idea of recursive completion of the error vector works for an arbitrary field F .
Here is a pseudocode listing for a frequency domain completion.

22

/*Frequency Domain Completion*/
{
for (j = r + 1 to n)

Sj mod n = −
∑d
i=1 σiSj−i;

for (i = 0 to n - 1)
Ei = 1

n

∑n−1
j=0 Sjα

−ij;
}

A complete RS decoding algorithm using the frequency domain completion is given in Figure 9.5.

/*Frequency Domain RS Decoding Algorithm*/
{
for (j = 1 to r)
Sj =

∑n−1
i=0 Riα

ij;
S(x) = S1 + S2x+ · · ·+ Srx

r−1;
if (S(x) = = 0)
print ‘‘no errors occured’’;

else
{
Euclid(xr, S(x), t, t− 1);
σ(x) = v(x)/v(0);
ω(x) = r(x)/v(0);
for (j = r + 1 to n)

Sj mod n = −
∑d
i=0 σiSj−i;

for (i = 0 to n -1)
Ei = 1

n

∑n−1
j=0 Sjα

−ij;
for (i = 0 to n - 1)
Ĉi = Ri − Ei;

print ‘‘corrected codeword: [Ĉ0, Ĉ1, . . . , Ĉn−1]’’;
}

}

Figure 9.5. A Frequency Domain RS Decoding Algorithm

Example 9.8. Consider the (7,3) RS code over GF (23) with g(x) = (x − α)(x − α2)(x − α3)(x − α4) =
x4 + α3x3 + x2 + αx + α3 already considered in Examples 9.6 and 9.7. Suppose the received vector is
R = (α3, α, 1, α2, 0, α3, 1). The syndromes Sj =

∑
Riα

ij are S1 = α3, S2 = α4, S3 = α4, S4 = 0, so that
S(x) = α4x2 +α4x+α3. If we invoke the procedure Euclid[x4, α4x2 +α4x+α3, 2, 1] we obtain the following
table:

i vi(x) ri(x) qi(x)

−1 0 x4 −−
0 1 α4x2 + α4x+ α3 −−
1 α3x2 + α3x+ α5 x+ α α3x2 + α3x+ α5

Thus we conclude σ(x) = α−5(α5 + α3x+ α3x2) = 1 + α5x+ α5x2, and ω(x) = α−5(x+ α) = α2x+ α3.

23

With the time domain approach, we find that σ(α−3) = σ(α−2) = 0, i.e., σ(x) = (1 + α2x)(1 + α3x).
Thus the error locations are i = 2 and i = 3. To evaluate these two errors, use the formula (9.72), together
with the fact that σ′(x) = α5, so that ω(x)/σ′(x) = α4x+ α5, and find

E2 =
ω(α−2)
σ′(α−2)

= α4 · α−2 + α5 = α3

E3 =
ω(α−3)
σ′(α−3)

= α4 · α−3 + α5 = α6.

Thus E = (0, 0, α3, α6, 0, 0, 0) and the decoder’s output is Ĉ = R + E = (α3, α, α, 1, 0, α3, 1).
With the frequency domain approach, we use the intial conditions S1 = α3, S2 = α4, S3 = α4, S4 = 0

and the recursion (based on the coefficients of σ(x)) Sj = α5Sj−1 + α5Sj−2 to find

S5 = α5 · 0 + α5 · α4 = α2

S6 = α5 · α2 + α5 · 0 = 1

S7 = S0 = α5 · 1 + α5 · α2 = α4.

Thus S = (S0, S1, S2, S3, S4, S5, S6) = (α4, α3, α4, α4, 0, α2, 1). To obtain E, we take on inverse DFT of S,
using (9.12):

E = Ŝ = (0, 0, α3, α6, 0, 0, 0),

and now the decoding concludes as before.

We conclude this section with a brief discussion of two important applications of RS codes: burst-error
correction and concatenated coding.

We can illustrate the application to burst-error correction by returning to Example 9.8. There we saw
the (7,3) RS code over GF (8) in action, correcting two symbol errors. But instead of viewing each codeword
as a 7-dimensional vector over GF (8), we can expand each element of GF (8) into a three-dimensional binary
vector via Table 9.4 and thereby convert the codewords into 21-dimensional binary vectors. In other words,
the (7, 3) RS code over GF (8) can be viewed as a (21, 9) linear code over GF (2). For example, the codeword

C = (α3, α, α, 1, 0, α3, 1)

becomes the binary vector
C = (011 010 010 001 000 011 001).

i αi

0 001
1 010
2 100
3 011
4 110
5 111
6 101

Table 9.4. The Field GF (8) represented as powers of α, where α3 = α+ 1.

Now suppose this binary version of C was sent over a binary channel and suffered the following error burst
of length 5:

E = (000 000 0

error
burst︷ ︸︸ ︷
11 101 000 000 000).

24

(x1,...,x7)

inner
channel

encoder BSC
(p=.025)

decoder

outer
channel

(y1,...,y7)

(v1,...,v4)(u1,..,u4)

Then the received vector would be

R = (011 010 001 100 000 011 001),

which of course differs from C in four positions. Ordinarily it would be difficult or impossible to correct
four errors in a (21, 9) binary linear code (see Problem 9.33), but we can take advantage of the fact that
this particular set of four errors has occured in a short burst by observing that when E is mapped into
7-dimensional vector from GF (8),

E = (0, 0, α3, α6, 0, 0, 0),

it only has weight 2! Thus if we convert R into a vector from GF (8),

R = (α3, α, 1, α2, 0, α3, 1),

we can (and we already did in Example 9.8) find the error pattern and correct the errors, via the decoding
algorithm of Figure 9.4 or 9.5. In this way the original RS code has become a (21,9) binary linear code which
is capable of correcting many patterns of burst errors.

The generalization should be obvious: the t-error correcting RS code of length n over GF (qm) can be
implemented as a (m(qm − 1),m(qm − 1 − 2t)) linear code over GF (q) which is capable of correcting any
burst-error pattern that does not affect more than t of the symbols in the original GF (qm) version of the
codeword.

We come finally to the application of RS to concatenated coding, a subject already mentioned briefly in
Chapter 6 (see p. 125). We illustrate with a numerical example.

Figure 9.6. The (7,4) Hamming code on a BSC with p = .025.

Suppose the (7,4) binary Hamming code is being used on a BSC with raw error probability p = .025, as
shown in Figure 9.6. In the notation of Figure 9.6, P{u �= v} =

∑7
k=2

(
7
k

)
pk(1− p)7−k = .0121. The idea of

concatenation is to regard the “encoder-BSC-decoder” part of Figure 9.6 as one big noisy channel, called the
outer channel (the BSC itself becomes the inner channel), and to design a code for it. In this example the
outer channel is a DMC with 16 inputs and outputs; the results of this section suggest that we regard these
inputs and outputs as elements from GF (16) rather than as four-dimensional vectors over GF (2). So let us
now consider using the (15, 11) RS code over GF (16) to reduce the noise in the outer channel, as illustrated
in Figure 9.7.

The RS encoder in Figure 9.7 takes 11 information symbols α = (α0, . . . , α10) from GF (16) (which
are really 44 bits from the original source) and produces a RS codeword C = (C0, C1, . . . , C14). The outer
channel then garbles C, and it is received as R = (R0, . . . , R14). The RS decoder then produces an estimate
β = (β0, . . . , β10) of α, which will be equal to α if the outer channel has caused no more than two symbol

25

RS
Encoder

RS
Decoder

Outer
Channel

C R
(a0,...,a10) (b0,...,b10)

Encoder DecoderInner
Channel

Outer Channel

Figure 9.7. The (15, 11) Reed-Solomon code
being used on the outer channel of Figure 9.6.

errors. Thus if ε (= 0.0121) denotes the probability of decoder error in Figure 9.6, the probability of decoder
error in Figure 9.7 is not more than

∑15
k=3

(
15
k

)
εk(1− ε)15−k = 0.0007. The overall rate of the coding system

depicted in Figure 9.7 is 11/15× 4/7 = 0.42; indeed, the system is really just a (105,44) binary linear code
which has been “factored” in a clever way. We might wish to compare this to an approximately comparable
unfactored system, say the 11 error-correcting binary BCH code of length 127 which is a (127, 57) code.
Its rate (0.45) is slightly higher and its decoder error probability (.0004) is slightly lower, but its decoding
complexity is considerably larger—for the BCH code, the error-locator polynomial will typically be an 11th
degree polynomial over GF (128), whereas for the RS code it will be a quadratic polynomial over GF (16).

The preceding example illustrates both the general idea of concatenation and the reason why RS codes
are so useful in concatenated systems. Any coded communication system can be regarded as a noisy outer
channel, as in Figure 9.8. However, for this point of view to be useful, we must be able to design an outer
code capable of correcting most of the errors caused by the outer channel, which is likely to be a very complex
beast, since its errors are caused by inner decoder failures. When the inner decoder fails, that is when v �= u
in Figure 9.8, the symbols v1, . . . , vk usually bear practically no resemblance to u1, . . . , uk. This means that
errors in the outer channel tend to occur in bursts of length k. And we have already seen that RS codes are
well suited to burst-error correction. This is the reason why RS codes are in widespread use as outer codes
in concatenated systems.

Figure 9.8. A general coded communication system,
viewed as a noisy “outer” channel. (Compare to Fig. 9.6.)

26

9.7 Decoding When Erasures are Present

We have seen that BCH and RS codes can correct multiple errors. In this section we will see that they can
also correct another class of channel flaws, called erasures. An erasure is simply a channel symbol which
is received illegibly. For example, consider the English word BLOCK. If the third letter is changed from O
to A, we get BLACK ; this is an error in the third position. However, if the same word suffers an erasure
in the third position, the result is BL*CK , where “*” is the erasure symbol. In practice, erasures are quite
common. They can be expected to occur when the channel noise becomes unusually severe for a short time.
For example, if you are trying to talk at the airport and a low-flying jet passes overhead, your conversation is
erased. Your listeners will not mistake what you are trying to say; they will simply not be able to understand
you.

In this section, we will learn something about erasure correction. We will see that in principle, an
erasure is only half as hard to correct as an error (Theorem 9.11); and we will see how to modify the BCH
and RS decoding algorithms in order to correct both erasures and errors.

To model a channel which can produce erasures as well as errors, we simply enlarge the underlying
symbol set F to F = F ∪ {∗}, where “*” is as above a special erasure symbol. The only allowed transmitted
symbols are the elements of F , but any element in F can be received. The main theoretical result about
simultaneous erasure and error correction follows. (Compare to Theorem 7.2.)

Theorem 9.11. Let C be a code over the alphabet F with minimum distance d. Then C is capable of
correcting any pattern of e0 erasures and e1 errors if e0 + 2e1 ≤ d− 1.

Proof: To prove the theorem, we first introduce the extended Hamming distance d̄H(x, y) between symbols
in F :

d̄H(x, y) =




0 if x = y
1 if x �= y and neither x nor y is “*”
1
2 if x �= y and one of x and y is “*”.

Thus for example if F = {0, 1} and F = {0, 1, ∗}, then d̄H(0, 1) = 1, d̄H(1, ∗) = 1/2, d̄H(1, 1) = 0. We
then extend the definition of d̄H to vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) with components in F as
follows:

d̄H(x,y) =
n∑
i=1

d̄H(xi, yi).

With this definition, d̄H becomes a metric on the set F
n

of all n-dimensional vectors over F . (See Problem
9.43), and indeed d̄H(x,y) is just the ordinary Hamming distance between x and y, if no erasure symbols
are involved in x or y.

We next introduce a special decoding algorithm, called the minimum distance decoding (MDD) algorithm
for the code C. When the MDD algorithm is given as input a received word R ∈ Fn, it produces as its output
a codeword Ci for which the extended Hamming distance d̄H(Ci, R) is smallest. We will prove Theorem 9.11
by showing that the MDD algorithm will correct e0 erasures and e1 errors, if e0 + 2e1 ≤ d− 1.

Thus suppose that Ci is the transmitted codeword, and that in transmission it suffers e0 erasures and
e1 errors, with e0 +2e1 ≤ d−1. If R is the corresponding garbled version of Ci, then d̄H(Ci, R) = 1

2e0 +e1 ≤
1
2 (d − 1). There can be no other codeword this close to R, since if e.g. d̄H(Cj , R) ≤ 1

2 (d − 1) where j �= i,
then by the triangle inequality

d̄H(Ci, Cj) ≤ d̄H(Ci, R) + d̄H(R,Cj)

≤ 1
2
(d− 1) +

1
2
(d− 1)

= d− 1

,

which contradicts the fact that the code’s minimum distance is d. Therefore the distance d̄H(Ci, R) is
uniquely smallest for j = i, and the MDD algorithm will correctly indentify Ci, the actual transmitted
codeword.

27

Example 9.9. Let C be the (7,3) cyclic code from Example 8.2, with codewords

C0 = 0000000
C1 = 1011100
C2 = 0101110
C3 = 0010111
C4 = 1001011
C5 = 1100101
C6 = 1110010
C7 = 0111001

Since this code is linear, its minimum distance is the same as its minimum weight; thus d = 4. According
to Theorem 9.11, then, this code is capable of correcting e0 erasures and e1 errors, provided e0 + 2e1 ≤ 3.
Here is a table of the allowed combinations of erasures and errors:

e0 e1

3 0
2 0
1 1
1 0
0 1
0 0

For example, suppose R = [1 1 1 0 ∗ 0 1] is received. The MDD algorithm would make the following
computations:

i dH(Ci, R) Erasure Positions Error Positions

0 4.5 {4} {0, 1, 2, 6}
1 3.5 {4} {1, 3, 6}
2 5.5 {4} {0, 2, 3, 5, 6}
3 3.5 {4} {0, 1, 5}
4 4.5 {4} {1, 2, 3, 5}
5 1.5 {4} {2}
6 2.5 {4} {5, 6}
7 2.5 {4} {0, 3}

Therefore the MDD would output C5 and conclude that R had suffered an erasure in position 4 and an error
in position 2, i.e. e0 = 1 and e1 = 1. On the other hand if y = [∗ ∗ ∗ 1 0 1 0], the computation would run
as follows:

i dH(Ci, R) Erasure Positions Error Positions

0 3.5 {0, 1, 2} {3, 5}
1 3.5 {0, 1, 2} {4, 5}
2 2.5 {0, 1, 2} {4}
3 4.5 {0, 1, 2} {3, 4, 6}
4 2.5 {0, 1, 2} {6}
5 5.5 {0, 1, 2} {3, 4, 5, 6}
6 2.5 {0, 1, 2} {3}
7 3.5 {0, 1, 2} {5, 6}

Here the algorithm faces a three-way tie (between C2, C4, and C6), but no matter which of these three it
selects, it will conclude that the transmitted codeword has suffered 3 erasures and 1 error, which is beyond
the code’s guaranteed correction capabilities.

28

Theorem 9.11 gives the theoretical erasure-and-error correction capability of a code in terms of its
minimum distance, but from a practical standpoint the MDD algorithm used in the proof leaves much to
be desired, since it is plainly impractical to compare the received word to each of the codewords unless the
code is very small. Fortunately, for BCH and RS codes, there is a simple modification of the basic “errors
only” decoding algorithms we have already presented in Section 9.6 (Figs. 9.4 and 9.5), which enables them
to correct erasures as well as errors. In the remainder of this section, we will discuss this modification.

The erasures-and-errors decoding algorithms for BCH and RS codes, like their errors-only counterparts,
are virtually identical, but for definititeness we’ll consider in detail only RS codes. At the end of this section,
we’ll discuss the simple modifications required for BCH codes. By Theorem 9.7, the minimum distance of
an (n, k) RS code is r + 1, where r = n− k, and so Theorem 9.11 implies the following.

Theorem 9.12. Let C be an (n, k) RS code over a field F . Then C is capable of correcting any pattern of
e0 erasures and e1 errors, if e0 + 2e1 ≤ r, where r = n− k.

Now let’s begin our discussion of the erasures-and-errors decoding algorithm for RS codes. Suppose
we are given a received vector R = (R0, R1, . . . , Rn−1), which is a noisy version of an unknown codeword
C = (C0, C1, . . . , Cn−1), from an (n, k) RS code with generator polynomial g(x) = (x−α)(x−α2) · · · (x−αr),
with r = n − k. We assume R has suffered e0 erasures and e1 errors, where e0 + 2e1 ≤ r. The first step in
the decoding algorithm is to store the locations of the erasures. This is done by defining the erasure set I0
as

I0 = {i : R0 = ∗}, (9.73)

and then computing the erasure location polynomial σ0(x):

σ0(x) =
∏
i∈I0

(1− αix). (9.74)

(If there are no erasures, σ0(x) is defined to be 1.)
Once the erasure locations have been “stored” in σ0(x), the algorithm replaces the *’s in R with 0’s,

i.e., a new received vector R′ = (R′0, R
′
1, . . . , R

′
n−1) is defined, as follows:

R′i =
{
Ri if Ri �= ∗
0 if Ri = ∗. (9.75)

The advantage of replacing the *’s with 0’s is that unlike *, 0 is a legal element of the field F , and so
arithmetic operations can be performed on any component of R′. The disadvantage of doing this is that
when viewed as a garbled version of C, R′ will have suffered e0 + e1 errors,* which may exceed the code’s
errors-only correction capability. However, as we shall see, by using the “side information” provided by the
erasure locator polynomial σ0(x), the errors in R′ can all be corrected.

With this preliminary “erasure management” completed, the decoding algorithm proceeds in a manner
which is very similar to the errors-only algorithm. In particular, the next step is to compute the syndrome
polynomial S(x) = S1 + S2x+ · · ·+ Srx

r−1, where

Sj =
n−1∑
i=0

R′iα
ij , for j = 1, 2, . . . , r.

If now we define the errors-and-erasures vector E′ = (E′0, E
′
1, . . . , E

′
n−1) as E′ = R′ − C, and the “twisted”

errors-and erasures vector V by
V = (E′0, E

′
1α, . . . , E

′
n−1α

n−1), (9.76)

then it follows by the results of Section 9.3 that S(x) = V̂ (x) mod xr, and the Key Equation (9.37) becomes

σ(x)S(x) ≡ ω(x) (mod xr), (9.77)

* Unless, of course, some of the erased components of C were actually 0, in which cases C and R′ would
differ in fewer than e0 + e1 positions.

29

where σ(x) is the locator polynomial, and ω(x) is the evaluator polynomial, for the vector V . From now on,
we’ll call σ(x) the errors-and-erasures locator polynomial, and ω(x) errors-and-erasures evaluator polynomial.

Let’s focus for a moment on σ(x), the errors-and erasures locator polynomial. We have

σ(x) =
∏
i∈I

(1− αix), (9.78)

where I is the errors-and erasures set, i.e.,
I = I0 ∪ I1, (9.79)

where I0 is the erasure set defined in (9.73) and I1 is the error set defined as follows:

I1 = {i : Ri �= ∗ and Ri �= Ci.}.

It thus follows from (9.78) and (9.79) that

σ(x) = σ0(x)σ1(x), (9.80)

where σ0(x) is as defined in (9.74) and

σ1(x) =
∏
i∈I1

(1− αix). (9.81)

Naturally we call σ1(x) the error locator polynomial.
Now we return to the key equation (9.77). In view of (9.80), we already know part of σ(x), viz. σ0(x),

and so the decoding algorithm’s next step is to compute the modified syndrome polynomial S0(x), defined
as follows:

S0(x) = σ0(x)S(x) mod xr. (9.82)

Combining (9.77), (9.80), and (9.82), the key equation becomes

σ1(x)S0(x) ≡ ω(x) (mod xr). (9.83)

At this point, the decoder will know S0(x), and wish to compute σ1(x) and ω(x), using Euclid’s algorithm.
Is this possible? Yes, because we have

deg σ1(x) = e1

degω(x) ≤ e0 + e1 − 1

so that deg σ1 + degω ≤ e0 + 2e1− 1 < r = deg xr, since we have assumed e0 + 2e1 ≤ r. Although it may no
longer be true that gcd(σ(x), ω(x)) = 1, it will be true that gcd(σ1(x), ω(x)) = 1 (see Prob. 9.45). It thus
follows from Theorem 9.6 that the procedure Euclid(xr, S0(x), µ, ν) will return σ1(x) and ω(x), if µ and ν
are chosen properly. To chose µ and ν, we reason as follows. Since e0 + 2e1 ≤ r, we have

deg σ1(x) = e1 ≤
r − e0

2
,

so that deg σ1(x) ≤ �(r − e0)/2�. Similarly,

degω(x) ≤ e0 + e1 − 1 ≤ e0 +
⌊
r − e0

2

⌋
− 1

=
⌊
r + e0

2

⌋
− 1

≤
⌈
r + e0

2

⌉
− 1

.

30

It is an easy exercise to prove that �(r − e0)/2� + �(r + e0)/2� = r (See Prob. 9.46), and so it follows
that if we define

µ =
⌊
r − e0

2

⌋

ν =
⌈
r + e0

2

⌉
− 1,

(9.84)

then the procedure Euclid(xr, S0(x), µ, ν) is guaranteed return a pair of polynomials (v(x), r(x)) such that
σ1(x) = λv(x), ω(x) = λr(x), where λ is a nonzero scalar. To find λ we recall that σ1(0) = 1 (see 9.81), and
so we have

σ1(x) = v(x)/v(0)
ω(x) = r(x)/v(0).

Now, having computed the erasure locator polynomial σ0(x) and the error locator polynomial σ1(x),
the algorithm computes the erasure and error locator polynomial σ(x) by polynomial multiplication — see
(9.80).

At this stage, the algorithm has both the locator polynomial σ(x) and evaluator polynomial ω(x) for the
errors-and-erasures vector E′, and the decoding can be completed by either the “time domain completion”
or the “frequency domain completion” described in Section 9.6. The errors-and-erasures decoding algorithm
is thus summarized in Figure 9.9.

/*RS Errors and Erasures Decoding Algorithm*/
{
Input I0; e0 = |I0|;
σ0(x) =

∏
i∈I0(1− αix);

for (i ∈ I0);
Ri = 0;

for (j = 1, 2, . . . , r)
Sj =

∑n−1
i=0 Riα

ij;
S(x) = S1 + S2x+ · · ·+ Srx

r−1;
S0(x) = σ0(x)S(x) modxr;
µ = �(r − e0)/2�; ν = �(r + e0)/2� − 1;
Euclid(xr, S0(x), µ, ν);
σ1(x) = v(x)/v(0);
ω(x) = r(x)/v(0);
σ(x) = σ0(x)σ1(x);
...
(Time domain completion or frequency domain completion)

}

Figure 9.9. Decoding RS (or BCH) codes when erasures are present.

Example 9.10. We illustrate the erasures-and-errors RS decoding algorithm with the (7,2) RS code over the
field GF (8), which has generator polynomial g(x) = (x−α)(x−α2)(x−α3)(x−α4)(x−α5) = x5 +α2x4 +
α3x3 + α6x2 + α4x + α. (We are assuming that α, a primitive root in GF (8), is a root of the GF (2) -
primitive polynomial x3 + x + 1.) The code’s redundancy is r = 5 and so by Theorem 9.11, it can correct
any pattern of e0 erasures and e1 errors, provided e0 + 2e1 ≤ 5. Let us take the garbled codeword

R = [α4, α3, α6, ∗, α2, α4, α2],

and try to decode it, using the algorithm in Figure 9.9.

The first phase of the decoding algorithm is the “erasure management,” which in this case amounts
simply to observing that the erasure set is I0 = {3}, so that e0 = 1, the erasure locator polynomial is

σ0(x) = 1 + α3x,

31

and the modified received vector R′ is

R′ = [α4, α3, α6, 0, α2, α4, α2].

The next step is to compute the syndrome values S1, S2, S3, S4, S5, using R′. We have

Sj = α4 + α3+j + α6+2j + α2+4j + α4+5j + α2+6j ,

so that a routine calculation gives

S1 = 1, S2 = 1, S3 = α5, S4 = α2, S5 = α4.

Thus the modified syndrome polynomial S0(x) is

S0(x) = (1 + x+ α5x2 + α2x3 + α4x4)(1 + α3x)(modx5)

= 1 + αx+ +α2x2 + α4x3 + x4

Since e0 = 1, r = 5, the parameters µ and ν are

µ =
⌊

5− 1
2

⌋
= 2

ν =
⌈

5 + 1
2

⌉
− 1 = 2

Thus we are required to invoke Euclid(x5, S0(x), 2, 2). Here is a summary of the work:

i vi ri qi
−1 0 x5 −−

0 1 x4 + α4x3 + α2x2 + αx+ 1 −−
1 x+ α4 α4x3 + α5x2 + α4x+ α4 x+ α4

2 α3x2 + α4x+ α6 α4x2 + α5x+ α6 α3x+ α5

Thus Euclid(x5, S0(x), 2, 2) returns (v2(x), r2(x)) = (α3x2 + α4x+ α6, α4x2 + α5x+ α6), so that

σ1(x) = αv2(x) = α4x2 + α5x+ 1

ω(x) = αr2(x) = α5x2 + α6x+ 1

and finally
σ(x) = σ0(x)σ1(x) = x3 + α2x2 + α2x+ 1.

This completes the “erasure specific” part of the decoding, i.e., the portion of the algorithm described in
Figure 9.9. We will now finish the decoding, using both the time domain and frequency domain completions.

For the time domain completion, we note that σ′(x) = x2 + α2, and compute the following table:

i σ(α−i) σ′(α−i) ω(α−i) Ei = ω(α−i)/σ′(α−i)
0 0 α6 α3 α4

1 α5

2 α4

3 0 α4 α5 α
4 0 1 α3 α3

5 α5

6 α5

Thus the errors-and-erasures vector is E′ = [α4, 0, 0, α, α3, 0, 0] (which means that there are two errors,
in positions 0 and 4, in addition to the erasure in position 3), and so the decoded codeword is Ĉ = R′ + E′,
i.e.,

Ĉ = [0, α3, α6, α, α5, α4, α2].

32

For the frequency-domain completion, having already computed S1, S2, S3, S4, S5, we compute S6 and
S7 (= S0) via the recursion

Sj = α2Sj−1 + α2Sj−2 + Sj−3

(since σ(x) = 1 + α2x + α2x2 + x3), and find that S6 = α2, and S0 = α5. Thus the complete syndrome
vector S is

S = [α5, 1, 1, α5, α2, α4, α2].

we now compute the inverse DFT of S, i.e.,

E′i = α5 + α−i + α−2i + α5−3i + α2−4i + α4−5i + α2−6i

= α5 + α6i + α5i + α5+4i + α2+3i + α4+2i + α2+i

This gives
E′ = [α4, 0, 0, α, α3, 0, 0]

just as in the time-domain completion, and so

Ĉ = [0, α3, α6, α, α5, α4, α2]

as before.
Let’s conclude this section with a brief discussion of how to decode BCH codes when erasures are

present. The key difference between the (errors only) decoding algorithm for BCH codes and RS codes is
that for BCH codes, once the errors have been located, there is no need to evaluate them, since the only
possible error value is 1. What this means is that when erasures are present, the algorithm in Figure 9.9
still holds (with 2t replacing r); the only way in which the decoding of BCH codes is simpler is in the
implementation of the time domain completion. (Compare Figures 9.4 and 9.5.)

33

9.8 The (23, 12) Golay Code.

In this section we will discuss an extremely beautiful but alas! nongeneralizable code, the binary (23, 12)
Golay code. It is arguably the single most important error-correcting code. (There is also an (11, 6) Golay
code over GF (3); see Probs. 9.62–9.65)

We begin with a tantalizing number-theoretic fact. In the 23-dimensional vector space over GF (2),
which we call V23, a Hamming sphere of radius 3 contains

1 +
(

23
1

)
+

(
23
2

)
+

(
23
3

)
= 2048 vectors.

But 2048 = 211 is an exact power of 2, and thus it is conceivable that we could pack V23 with 4096 = 212

spheres of radius 3, exactly, with no overlap. If we could perform this combinatorial miracle, the centers
of the spheres would constitute a code with 212 codewords of length 23 (rate = 12/23 = 0.52) capable of
correcting any error pattern of weight ≤ 3. In this section, not only will we prove that such a packing is
possible; we will show that the centers of the spheres can be taken as the codewords in a (23, 12) binary
cyclic code!

In coding-theoretic terms, then, we need to construct a binary cyclic (23, 12) triple error-correcting
code, i.e., one with dmin ≥ 7. We base the construction on certain properties of the field GF (211). Since
211 − 1 = 2047 = 23 · 89, GF (211) must contain a primitive 23rd root of unity, which we shall call β. The
minimal polynomial of β over GF (2) is g(x) =

∏
γ∈B(x − γ), where B = {β2i : i = 0, 1, 2, . . .} is the set of

conjugates of β. A simple computation shows that B contains only 11 elements; indeed,

g(x) =
∏
γ∈B

(x− γ), (9.85)

where
B = {βj : j = 1, 2, 4, 8, 16, 9, 18, 13, 3, 6, 12}.

Similarly the minimal polynomial of β−1 = β22 is

g̃(x) =
∏
γ∈B̃

(x− γ) (9.86)

where
B̃ = {βj : j = 22, 21, 19, 15, 7, 14, 5, 10, 20, 17, 11}.

Since every 23rd root of unity except 1 is a zero of either g(x) or g̃(x), it follows that the factorization of
x23 into irreducible factors over GF (2) is

x23 − 1 = (x− 1)g(x)g̃(x) (9.87)

In fact, it can be shown that

g(x) = x11 + x9 + x7 + x6 + x5 + x+ 1

g̃(x) = x11 + x10 + x6 + x5 + x4 + x2 + 1,
(9.88)

but we will not need this explicit factorization in the rest of this section. We can now define the Golay code.

Definition. The (23, 13) Golay code is the binary cyclic code whose generator polynomial is g(x), as
defined in (9.85) or (9.88).

Now all (!) we have to do is show that the code’s minimum weight is ≥ 7. The first step in this direction
is rather easy.

34

Lemma 9.3. Each nonzero Golay codeword has weight ≥ 5.

Proof: In view of the structure of the set B of zeroes of g(x) (cf. Eq. (9.85)), we see that for every codeword
C,

C(β) = C(β2) = C(β3) = C(β4) = 0. (9.89)

It thus follows from the BCH argument (Theorem 9.3) that dmin ≥ 5.

In view of Lemma 9.3, it remains to show that there can be no words of weight 5 or 6. The next lemma
allows us to focus our attention on words of even weight.

Lemma 9.4. If Ai denotes the number of Golay codewords of weight i, then, for 0 ≤ i ≤ 23,

Ai = A23−i. (9.90)

Proof: Note that g(x)g̃(x) = (x23 − 1)/(x − 1) = 1 + x + x2 + · · · + x22, and so the constant vector
K = (11111...111) is in the code. By adding K to a word of weight i, we get a word of weight 23 − i, and
conversely. Thus the correspondence C ↔ C +K is one-to-one between words of weights i and 23− i.

The next lemma eliminates words of weight 2, 6, 10, 14, 18, and 22; by Lemma 9.4 this also eliminates
words of weight 1, 5, 9, 13, 17, and 21, and thus proves that the Golay code has minimum distance ≥ 7.

Lemma 9.5. If C is a Golay codeword of even weight w, then w ≡ 0 (mod 4).

Proof: Let the generating function for C be denoted by C(x), i.e.,

C(x) = xe1 + xe2 + · · ·+ xew , (9.91)

where 0 ≤ e1 < e2 < · · · < ew ≤ 22. Since C belongs to the Golay code, C(β) = 0, that is,

C(x) ≡ 0 (mod g(x)). (9.92)

Since C has even weight, C(1) = 0, that is

C(x) ≡ 0 (mod x− 1). (9.93)

Now if we define C̃(x) by
C̃(x) = x−e1 + x−e2 + · · ·+ x−ew , (9.94)

with exponents taken modulo 23, it follows that C̃(β−1) = C(β) = 0, that is ,

C̃(x) ≡ 0 (mod g̃(x)). (9.95)

Combining (9.92), (9.93), (9.95) with (9.87), we have

C(x)C̃(x) ≡ 0 (mod x23 − 1). (9.96)

Now let us actually compute C(x)C̃(x)(modx23 − 1), using the defining equations (9.91) and (9.94):

35

C(x)C̃(x) ≡
w∑

i,j=1

xej−ej (modx23 − 1)

≡ w +
w∑

i,j=1
i�=j

xej−ej (modx23 − 1)

≡
w∑

i,j=1
i�=j

xei−ej (modx23 − 1)
(9.97)

(the last equality because w is even and all computations take place in GF (2)). Thus

C(x)C̃(x) ≡
22∑
b=1

µbx
b (mod x23 − 1),

where µb is the number of ordered pairs (i, j) with ei − ej ≡ b (mod 23). By Eq. (9.96) each µb is even:

µb ≡ 0 (mod 2), b = 1, 2, . . . , 22. (9.98)

Now, if ei − ej ≡ b, then also ej − ei ≡ 23− b (mod 23). Thus

µb = µ23−b, b = 1, 2, . . . , 11. (9.99)

Finally, since there are w(w − 1) terms in the sum on the right side of (9.97),

22∑
b=1

µb = w(w − 1). (9.100)

Combining (9.98), (9.99), and (9.100), we have

w(w − 1) =
22∑
b=1

µb

= 2
11∑
b=1

µb

≡ 0 (mod 4),

i.e., w(w − 1) is a multiple of 4. But since w − 1 is odd, it follows that w itself is a multiple of 4, which
completes the proof.

Combining Lemmas 9.3, 9.4, and 9.5, we arrive at the following theorem.

Theorem 9.13. The number of codewords of weight i in the (23, 12) Golay code is 0 unless i = 0, 7, 8, 11,
12, 15, 16, or 23. Thus the spheres of radius 3 around the codewords do indeed pack V23 perfectly.

There is a simple but useful variant of the (23, 12) Golay code, that deserves mention here. If C =
(C0, C1, . . . , C22) is a Golay codeword, let us extend C to length 24 by appending an overall parity check,
i.e., by defining a 24th component C23 as follows:

C23 = C0 + C1 + · · ·+ C22.
∗

If every Golay codeword is extended in this way, the resulting code is a binary linear (but no longer cyclic)
(24, 12) code, which is called the (24, 12) extended Golay code. It is a simple matter then to prove the
following theorem. (See Problem 9.60).

* See Problem 7.17b.

36

Theorem 9.14. The number of codewords of weight i in the (24, 12) extended Golay code is 0 unless i = 0,8,
12, 16, or 24.

The (24, 12) extended Golay code enjoys two small advantages over the original (23, 12) Golay code,
which are however enough to make the extended code preferable in most applications. First, since 24 is a
multiple of eight, the (24, 12) code is naturally suited to byte-oriented implementations. Second, since the
minimum distance of the extended code is eight, if it is used to correct all patterns of three or fewer errors,
all error patterns of weight 4, and many error patterns of higher weight, will still be detectable, whereas the
original (23, 12) has no such extra detection capability. (See Problems 9.59, 9.62).

We conclude with some remarks about the implementation of the Golay codes. Since the (23, 12) code
is cyclic, it is clear that we could design an 11-stage shift-register encoder for it (see Section 8.2, and do
Problem 9.60.). The design of an algebraic decoding algorithm is not so easy; we could easily modify the
BCH decoding algorithm in Figures 9.1 or 9.2 to correct every pattern of two or fewer errors, but the code
is “accidentally” capable of correcting three! Fortunately, however, the code is small enough so that the
syndrome “table lookup” algorithm discussed in Section 7.2 is usally practical. (See Prob. 9.61).

37

9.9. Problems for Chapter 9.

9.1. We saw in Section 9.1 that the function f(V) = V3 makes the matrix H2 of Eq. (9.3) into the
parity-check matrix of a double-error correcting code. Investigate whether or not the following candidate f ’s
work:

(a) f(V) = TV, where T is a linear transformation of Vm.

(b) f(V) = a0 + a1V + a2V2, where V is regarded as an element of GF (2m).

(c) f(V) = V−1, where V ∈ GF (2m).

9.2. Suppose F is a finite field with q elements.

(a) If a is an arbitrary element of F , define the q − 1st degree polynomial fa(x) = (x − a)q−1 − 1. Find
the value of fa(x) for each of the q elements of F .

(b) Using the results of part a, or otherwise, show that every function f : F → F can be represented as a
polynomial of degree at most q − 1.

9.3. (This problem gives a generalization of the Vandermonde determinant theorem, which is needed in
the proof of Theorem 9.1.) Let Pi(x) be a monic polynomial of degree i, for i = 0, 1, . . . , n − 1, and let
x1, x2, . . . , xn be distinct indeterminates. Show that

det




P0(x1) · · · P0(xn)
P1(x1) · · · P1(xn)

...
...

Pn−1(x1) · · · Pn−1(xn)


 =

n−1∏
i=1

n∏
j=i+1

(xj − xi).

[Hint: If xi = xj , the left side vanishes.] The Vandermonde determinant theorem is the special case
Pi(x) = xi.

9.4. Here is a pseudocode listing for an algorithm for computing the dimension of the t error-correcting
BCH code of length 2m − 1:

{

S = {1, 3, . . . , 2t− 1};

k = 2m − 1;

while(S is not empty)

{

u0 = least element in S;

u = u0;

do

{

delete u from S;

38

k = k − 1;

u = 2u mod 2m − 1;

}

while(u �= u0)

}

}

(a) Show that when the algorithm terminates, the integer k is equal to the dimension of the t error-
correcting BCH code of length 2m − 1.

(b) Use the algorithm to compute the dimension of the t error-correcting BCH code of length 63, for
1 ≤ t ≤ 31.

9.5. (a) Prove that the dimension of the two-error-correcting BCH code of length n = 2m − 1 is n− 2m,
for all m ≥ 3.

(b) More generally show that for any fixed t ≥ 1, the dimension of the t-error-correcting BCH code of
length n = 2m − 1 is n−mt for all sufficiently large m.

(c) What is the smallest value of m0 such that the three error-correcting BCH code of length n = 2m − 1
has dimension n− 3m for all m ≥ m0?

9.6.

(a) For each t in the range 1 ≤ t ≤ 7, compute the dimension of the t-error correcting BCH code of length
15.

(b) For each of the codes in part (a), calculate the generator polynomial, assuming a primitive root α in
GF (16) that satisfies the equation α4 = α+ 1. (Cf. Example 9.1.)

9.7. In Example 9.1 we computed the generator polynomial for the three-error-correcting BCH code of
length 15, under the assumption that the primitive root α of GF (16) satisfied α4 = α+ 1. If we had chosen
a primitive root satisfying α4 = α3 +1 instead, what would the generator polynomial have turned out to be?

9.8. Prove the inverse DFT formula, Eq. (9.12)

9.9. Consider the field GF (7), as represented by the set of integers {0, 1, 2, 3, 4, 5, 6}, with all arithmetic
done modulo 7.

(a) Show that 3 is a primitive 6th root of unity in GF (7).

(b) Using 3 as the needed primitive 6th root of unity, find the DFT of the vectors V1 = (1, 2, 3, 4, 5, 6) and
V2 = (1, 3, 2, 6, 4, 5).

(c) Why do you suppose the DFT of V2 is so much “simpler” than that of V1?

9.10. Prove that the DFT of the phase-shifted vector Vµ in equation (9.17) is given by the formula (9.18).

39

9.11. (Generalized BCH codes). Let g(x) be a polynomial with coefficients in GF (q) which divides xn−1.
Further assume that α is an nth root of unity in some extension field of GF (q) and that

g(αi) = 0, for i = m0,m0 + 1, . . . ,m0 + d− 2.

for integers m0 and d. Let C be the cyclic code with generator polynomial g(x). Show that the minimum
distance of C is ≥ d. [Hint: Use the BCH argument.]

9.12. Is the converse of the “BCH Argument” (Theorem 9.3) true? That is, if V is a vector of weight w,
does it necessarily follow that the DFT V̂ must have w − 1 or more consecutive zero components? If your
answer is yes, give a proof. If your answer is no, give an explicit counterexample.

9.13. Prove that gcd(V̂ (x), 1−xn) =
∏
i/∈I(1−αin), where V̂ (x) is as defined in (9.14), and I is as defined

in (9.19).

9.14. Show that if any d consecutive components of V̂ are known, the rest can be calculated, provided we
also know σV(x) (cf. Corollary 9.2).

9.15. The field GF (16), as represented in Table 9.1, contains a primitive 5th root of unity, namely α3,
which for the remainder of this problem we shall denote by β. Let V = (0, α4, α5, 0, α7), a vector of length
5 over GF (16). Using the definitions in Section 9.3, compute V̂, σV, σ(i)

V for i = 1, 2, 4, and ωV(x). (Cf.
Example 9.2.)

9.16. In Example 9.2, the components of V̂ satisfy the recursion V̂j = α6V̂j−3. Explain “why” this should
be so. [Hint: Examine (9.31) carefully.]

9.17. If Sj represents the jth syndrome value in the decoding of a BCH code (cf. Eq. (9.34)), show that,
for all j, S2j = S2

j .

9.18. If f(x) = f0 + f1x + · · ·+ fnx
n is a polynomial over a field f , its formal derivative f ′(x) is defined

as follows.
f ′(x) = f1 + 2f2x+ · · ·+ nfnx

n−1.

From this definition, without the use of limits, deduce the following facts:

(a) (f + g)′ = f ′ + g′.

(b) (fg)′ = fg′ + f ′g.

(c) (fm)′ = mfm−1f ′.

(d) If f(x) =
∏r
i=1(x− βi), then

f ′(x) =
r∑
i=1

r∏
j=1
j �=i

(x− βj).

(e) If f(x) is as given in part (d) and the βi are distinct, then

r∑
i=1

1
x− βi

=
f ′(x)
f(x)

.

40

9.19.

(a) Prove properties A-F of Euclid’s algorithm given in Table 9.2.

(b) Prove that rn(x), the last nonzero remainder in Euclid’s algorithm, is a greatest common divisor of
a(x) and b(x), and that Eq. (9.43) holds.

9.20. Let a(x) = x8 − 1, b(x) = x6 − 1, polynomials over the field GF (2).

(a) Apply Euclid’s algorithm to the pair (a(x), b(x)), thus obtaining a table like that in Example 9.3.

(b) For each pair (µ, ν) with µ ≥ 0, ν ≥ 0, and µ+ ν = 7, calculate Euclid(a, b, µ, ν). (Cf. Example 9.4.)

9.21. (Padé approximants). Let A(x) = a0 + a1x+ a2x
2 + · · · be a power series over a field F . If µ and ν

are nonnegative integers, a (µ, ν) Padé approximation to A(x) is a rational function p(x)/q(x) such that

q(x)A(x) ≡ p(x) (mod xµ+ν+1)(i)
deg q(x) ≤ µ,deg p(x) ≤ ν(ii)

Using Theorem 9.5, show that for each (µ, ν) there is (apart from a scalar factor) a unique pair (p0(x), q0(x))
such that if (i) and (ii) hold, then p(x) = λp0(x) and q(x) = λq0(x) for a nonzero scalar λ. The pair
(p0(x), q0(x)) is called the (µ, ν) Padé approximant to A(x). Referring to Table 9.3, compute the Padé
approximants to A(x) = 1 + x+ x2 + x4 + x6 + . . . over GF (2) with µ+ ν = 7.

9.22. With the same setup as Example 9.5, decode the following noisy codeword from the (15, 5) 3-error
correcting BCH code:

R = [R0, . . . , R14] = [110101010010010].

9.23. Consider the three-error-correcting BCH code of length 31, defined in terms of a primitive root
α ∈ GF (32) satisfying α5 + α2 + 1 = 0.

(a) Compute the generator polynomial.

(b) Decode the following received vector: [0000000111101011111011100010000].

(c) Decode the following received vector: [1011001111101010011000100101001].

9.24. Let α be a primitive nth root of unity in the field F , and let Pk be the set of polynomials of degree
≤ k − 1 over F , For each P ∈ Pk, define the vector C(P) = (P (1), P (α), . . . , P (αn−1).

(a) Show that the code consisting of all vectors C(P), is an MDS code, and find the corresponding n, k,
and d.

(b) Is the code cyclic? Explain.

(c) What relationship, if any, does this code bear to the RS code as defined in (9.67)?

9.25. Let F be any field which contains a primitive nth root of unity α. If r and i are fixed integers
between 0 and n, the set of all vectors C = (C0, C1, . . . , Cn−1) with components in F such that

n−1∑
i=0

Ciα
ij = 0, for j = i+ 1, i+ 2, . . . , i+ r

41

is called an alternate Reed-Solomon code.

(a) Show that the code so defined is an (n, n− r) cyclic code. Find the generator polynomial and dmin.

(b) Explicitly compute the generator polynomial g(x) for the alternate RS code with F = GF (8), n = 7,
r = 4, and i = 1. (Cf. Example 9.6.)

(c) Show that there exist n fixed nonzero elements from F , say γ0, . . . , γn−1, such that the alternate code
just described can be obtained from the original RS code (defined in (9.67)) by mapping each original
RS codeword (C0, . . . , Cn−1) to the vector (γ0C0, . . . , γn−1Cn−1).

9.26. Let α be an nth root of unity in a finite field F , and let C be the linear code of length n defined as
follows: C = (C0, C1, . . . , Cn−1) is a codeword if and only if

n−1∑
i=0

Ci
x− αi

≡ 0 (mod xr),

where x is an indeterminate.

(a) Show that the code C is cyclic.

(b) Find the dimension of the code, in terms of n and r.

(c) Find the code’s minimum distance.

(d) What is the relationship (if any) between C and the (n, k) RS code over F with generator polynomial
g(x) = (x− α) · · · (x− αr)?

9.27. Give a complete discussion of all MDS codes over GF (2).

9.28. Show that over any field F , the following two codes are MDS codes.

(a) The (n, 1) repetition code.

(b) The (n, n− 1) parity-check code.

9.29. In Theorem 9.6, it is shown that in a (n, k) Reed-Solomon code over a field F , the minimum weight
codeword has weight n− k + 1. Question: If the field F has q elements, exactly how many words of weight
n− k + 1 are there in the code? (Hint: Use Theorem 9.9.)

9.30. Using Table 9.1 for guidance, compute the generator polynomial g(x) for for a (15, 7) RS code over
GF (16). (Cf. Example 9.6.)

9.31. Consider the (7, 3) RS code of Example 9.6.

(a) Find the unique codeword (C0, . . . , C6) such that C0 = 1 C1 = 0, and C2 = 0. (Cf. Example 9.7.)

(b) Is there a codeword with C0 = α3, C1 = α, C2 = 1, and C3 = 0?

9.32. Decode the following garbled codeword from the (7, 3) RS code from Example 9.8:

R = [α3 1 α α2 α3 α 1].

42

9.33. Do you think there is a (21, 9) binary linear code which is capable of correcting any pattern of 4 or
fewer errors?

Problems 9.34–9.39 are all related. The present an alternative approach to Reed-Solomon codes. More
important, however, they culminate with the construction of the famous Justesen codes (see Ref. [15]). These
codes are important because they (together with certain variants of them) are the only known explicity
constructable family of linear codes which contain sequences of codes of lengths ni, dimensions ki, and
minimum distances di such that:

lim
i→∞

ni =∞,

lim
i→∞

ki/ni > 0,

lim
i→∞

di/ni > 0.

(See conclusions of Prob. 9.39. Also cf. Prob. 7.21, the Gilbert bound, which shows that such sequences of
codes must exist, but does not explain how to construct them.)

9.34. (Cf. Theorem 9.10.) Denote by Pr the set of polynomials of degree ≤ r over the finite field GF (qm)
and let (α0, α1, . . . , an−1) be a list of n > r distinct elements from GF (qm). Corresponding to each f(x) ∈ Pr,
let the vector (C0, C1, . . . , Cn−1) ∈ GF (qm)n be defined by Ci = f(αi). Show that the set of vectors obtained
from Pr in this way is a linear code over Fqm with length n, dimension r + 1, and minimum distance n− r.

9.35. The setup being the same as in Prob. 9.34, corresponding to each f ∈ Pr let

C = (C0, C
′
0, C1, C

′
1, . . . , Cn−1, C

′
n−1) ∈ GF (qm)2n

be defined by Ci = f(αi), C ′i = αif(αi). Show that the set of vectors thus obtained is a linear code over
GF (qm) with length 2n and dimension r+1, such that within each nonzero codeword there are at least n−r
distinct pairs (Ci, C ′i).

9.36. Let φ : GF (qm) → GF (q)m be a one-to-one linear mapping from GF (qm) onto GF (q)m. Take the
code over GF (qm) defined in Prob. 9.35, and make it into a code over GF (q) by mapping the codeword C
onto (φ(C0), φ(C ′0), . . . , φ(Cn−1), φ(C ′n−1)). Show that the resulting GF (q) linear code has length 2mn and
dimension m(r + 1), and that within each nonzero codeword, among the n subvectors (φ(Ci), φ(C ′i)), there
are at least n− r distinct ones.

9.37. (This problem is not out of place, despite appearances.) Let {x1, . . . , xM} be a set of M distinct
vectors with components from GF (2), and let wi = wH(xi) denote the Hamming weight of xi. Let p =
(w1 + · · ·+ wM)/nM . Prove that

logM ≤ nH2(p),

where H2 is the binary entropy function. [Hint: Let X = (X1, X2, . . . , Xn) be a random vector which is
equally likely to assume any of the values xi, and let pj denote the fraction of the M vectors that have a 1
in their jth coordinate. Now verify the following string of equalities and inequalities:

logM = H(X) ≤
n∑
j=1

H(Xj) =
n∑
j=1

H(pj) ≤ nH(p).




(This result due to James Massey [38].)

9.38. Returning to the codes defined in Prob. 9.35, specialize to q = 2, n = 2m, and (α0, α1, . . . , αn−1) any
ordering of the elements of GF (2m). Let r/2m = ρ, and show that the resulting codes have

43

(i) length = m2m+1,

(ii) rate = 1
2 (ρ+ 1

2m),

(iii) dmin
n ≥ (1− ρ)H−1

2

[
1
2 + log2(1−ρ)

2m

]
.

These codes are the Justesen codes mentioned above. [Hint: To prove (iii), use the results of Prob. 9.37].

9.39. Finally, show that for any 0 ≤ R ≤ 1
2 , there is an infinite sequence of Justesen codes over GF (2)

with lengths ni, dimensions ki, and minimum distances di such that:

lim
i→∞

ni =∞,

lim
i→∞

ki/ni = R,

lim
i→∞

sup di/ni = H−1
2 (1/2) · (1− 2R)

= 0.110028(1− 2R).

9.40. Show that d̄H , as defined in the proof of Theorem 9.11, is a bona fide metric (Cf. Problem 7.4).

9.41. For the (7, 3) code of Example 9.9, find a vector y ∈ {0, 1, ∗}7 for which mini d̄H is as large as
possible.

9.42. For a given value of d, how many pairs of nonnegative integers (e0, e1) are there such that e0 +2e1 ≤
d− 1?

9.43. If m and n are positive integers such that m+ n is even, show that

�m
2
�+ �n

2
� =

m+ n

2
.

(See the remarks immediately preceeding Eq. (9.84).

9.44. Consider the (7, 4) Hamming code of Example 7.3. The code has dmin = 3 and so by Theorem 9.11,
it is capable of correcting any pattern of e0 erasures and e1 errors, provided e0 + 2e1 ≤ 2. Bearing this in
mind, decode (if possible) each of the words in parts (a), (b), and (c).

(a) [1 1 1 0 0 ∗ 0]

(b) [0 ∗ 1 1 1 0 1]

(c) [0 1 ∗ 1 0 ∗ 1]

(d) If R is a randomly chosen vector of length 7 containing exactly one erasure, what is the probability that
it will be uniquely decoded by the MDD decoding algorithm introduced in the proof of Theorem 9.11?

9.45. Show that if σ1(x) is the error locator polynomial, and ω(x) is the errors and erasures evaluator
polynomial for RS errors–and–erasures decoding (see equations (9.77) and (9.81)), then gcd(σ1, ω) = 1.

9.46. Investigate the probability of decoder error for a Reed-Solomon decoder under the following circum-
stances. (Note that in both parts (a) and (b), e0 + 2e1 > r, so that the hypotheses of Theorem 9.11 are
violated.)

44

(a) r erasures and 1 error.

(b) r − 1 erasures and 1 error.

(c) r + 1 erasures, no errors.

9.47. Consider the (15, 7) RS code over GF (16) (generated by a primitive root satisfying α4 = α+1), and
decode the following received word.

R = [α13 1 ∗ α10 α12 α6 ∗ α5 α13 ∗ α1 α8 α7 α2 α9].

9.48. Using the suggestions at the end of Section 9.7, decode the following noisy vector from the (15, 5)
BCH code with generator polynomial g(x) = x10 + x8 + x5 + x4 + x2 + x2 + 1 (Cf. Example 9.1).

R = [1 1 ∗ 0 0 0 ∗ 0 0 0 1 ∗ 1 0 1].

(a) Use the time domain completion.

(b) Use the frequency-domain completion.

9.49. Consider an (n, k) linear code with dmin = d. If there are no errors, Theorem 9.11 guarantees
that the code is capable of correcting any pattern of up to d − 1 erasures. Show that this result cannot be
improved, by showing that there is at least one set of d erasures that the code isn’t capable of correcting.

9.50. In Section 8.4, we considered codes capable of correcting single bursts of errors. It turns out that it
is very much easier to correct single bursts of erasures. After doing this problem, you will agree that this is
so.

(a) If C is an (n, k) linear code which is capable of correcting any erasure burst of length b or less, show
that n− k ≥ b. (Cf. The Reiger bound, Corollary to Theorem 8.10).

(b) Show that any (n, k) cyclic code is capable of correcting any erasure burst of length n− k or less.

(c) Consider the (7, 3) cyclic code of Example 8.2. Correct the following codewords, which have suffered
erasure bursts of length 4: (10 ∗ ∗ ∗ ∗0), (∗ ∗ ∗ ∗ 101), (∗101 ∗ ∗∗).

9.51. When a linear code has suffered erasures but no errors, there is a very simple general technique for
correcting the erasures, which we shall develop in this problem. The idea is to replace each of the erased
symbols with a distinct indeterminate, and then to solve for the indeterminates, using the parity-check
matrix. For example, consider the (7, 4) binary Hamming code of Example 7.3. The code has dmin = 3
and so by Theorem 9.11, it is capable of correcting any pattern of two or fewer erasures, provided there
are no errors. If say the received word is R = (1 ∗ 1 ∗ 1 0 1), we replace the two erased symbols with
indeterminates x and y, thus obtaining R = (1 x 1 y 1 0 1).

(a) Use the fact that every codeword in the (7, 4) Hamming code satisfies the equation HCT = 0, where
H is the parity-check matrix given in Section 7.4, to obtain three simultaneous linear equations in the
indeterminates x and y, and solve these equations, thus correcting the erasures.

(b) If there were three erased positions instead of only two, we could use the same technique to obtain three
equations in the three indeterminates representing the erasures. We could then solve these equations
for the indeterminates, thus correcting three erasures. Yet Theorem 9.11 only guarantees that the code
is capable of correcting two erasures. What’s wrong here?

45

9.52. In this problem, we consider an alternative approach to correcting erasures and errors, which involves
the idea of “guessing” the values of the erasures.

(a) Assume first that the code is binary, i.e., the field F in Theorem 9.11 is GF (2). Suppose we have a
code C with mimimum distance d, and that we have received a noisy codeword containing e0 erasures
and e1 errors, with e0 + 2e1 ≤ d − 1. Suppose that we change all the erased positions to 0, and then
try to decode the word, using an errors-only decoding algorithm capable of correcting any pattern of
up to (d− 1)/2 errors. If the decoder succeeds, we stop. Otherwise, we try again, this time assuming
that all the erased positions are 1. Show that this procedure, i.e., guessing that the erasures are all 0s,
and then guessing that they are all 1s, will always succeed in correcting the errors and erasures.

(b) Illustrate the decoding technique suggested in part (a) by decoding the word [1110 ∗ 01] from the (7, 3)
binary cyclic code. (Cf. Example 9.9).

(c) Does this “guessing” procedure work for nonbinary fields? In particular, how could you modify it to
work over the ternary field GF (3)?

9.53. Consider the (7, 3) binary cyclic code with generator polynomial g(x) = x4+x3+x2+1, as described,
e.g., in Example 9.9. It has dmin = 4, and so by Theorem 9.10, it can correct any pattern of up to 3 erasures
(if no attempt is made to correct errors as well). It can also, however, correct some, thought not all, patterns
of four erasures. In this problem, you are asked to investigate the

(
7
4

)
= 35 possible erasure patterns of size

four, and to determine which of them are correctable. In particular, please find the number of weight four
erasure patterns that are correctable.

9.54. This problem concerns the probability that a randomly selected vector from GF (q)n will be decoded
by a decoder for a Reed-Solomon.

(a) Derive the following formula for the fraction of the total “volume” of GF (q)n occupied by nonoverlap-
ping Hamming spheres of radius t around the codewords in an (n, k) code over GF (q):

qk
∑t
i=0

(
n
i

)
(q − 1)i

qn
.

(b) Use the formula from part a to compute the limit, for a fixed value of t, as q →∞, of the probability that
a randomly selected word of length q− 1 will fall within Hamming distance t or less of some codeword
in a t error correcting RS code of length q − 1 over GF (q). (Assume that the code’s redundancy is
r = 2t.)

9.55. Let C be an (n, k) binary cyclic code, with generator polynomial g(x) and parity-check polynomial
h(x).

(a) Show that if h(1) �= 0, then every codeword has even weight.

(b) Show that if there is no pair (θ1, θ2) of roots of h(x) such that θ1θ2 = 1, then every codeword’s weight
is divisible by four. (Hint: This is a generalization of the result in Lemma 9.5.)

9.56. In the text we proved that the (23, 12) Golay code had dmin ≥ 7. Show that in fact, dmin = 7 for
this code. Do this in two ways:

(a) By examining the generator polynomial g(x).

(b) By showing that any (23, 12) binary linear code must have dmin ≤ 7.

46

9.57. Show that there is no (90, 78) binary linear code with dmin = 5, i.e., a perfect double-error-correcting
code of length 90, despite the fact that 1 +

(
90
1

)
+

(
90
2

)
= 212. (Hint: Let r denote the number of 12-bit

syndromes of odd weight corresponding to one-bit errors . Show that the number of odd weight syndromes
corresponding to two-bit errors is r(90− r), and attempt to determine r.)

9.58. Show that if C is a (23, 12) binary linear code, that its minimum distance must be ≤ 7. (Note:
This result, combined with Theorem 9.6, shows that in fact dmin = 7 for the Golay code, although since the
generator polynomial g(x) as defined in Eq. (9.83) has weight 7, there is an easier proof!)

9.59. The (23,12) binary Golay code defined in Section 9.8, when combined with syndrome table lookup
decoding, has the property that every error pattern of weight ≤ 3 will be corrected.

(a) Describe in detail what the decoder will do if the error pattern has weight 4.

(b) What if the error pattern has weight 5?

(c) Generalize the results of parts (a) and (b). For each integer t in the range 4 ≤ t ≤ 23, what will the
decoder do, if the error pattern has weight t?

9.60. Prove Theorem 9.14.

9.61. This problem concerns the number of codewords of weight 8 in the (24, 12) extended Golay code.

(a) Show that the number of codewords of weight 8 is not zero. Do this in two ways: (1) By examining
the generator polynomial g(x), for the original (23, 12) Golay code; (2) By showing that any (24, 12)
binary linear code must have dmin ≤ 8.

(b) Given 12 that the code contains exactly 759 words of weight 8, show that for any subset {i1, . . . , i5}
of five elements from {0, 1, . . . , 23} there is exactly one codeword of weight 8 which is 1 at these five
coordinate positions.

9.62. This problem concerns the error detecting capabilities of the extended (24, 12) Golay code. (In parts
(a) and (b), we assume that the code is being used to correct all error patterns of weight three or less.)

(a) Show that the code can detect all error patterns of weight 4.

(b) Given that the weight enumerator of the code is

1 + 759x8 + 2576x12 + 759x16 + x24,

for each e in the range 4 ≤ e ≤ 24, compute the number of error patterns of weight e that the code
will detect.

(c) Now assume the decoder only attempts to correct error patterns of weight two or less, and repeat part
(b).

(d) Now assume the decoder only attempts to correct error patterns of weight one or less, and repeat part
(b).

(e) Finally, assume the decoder is used in a detect only mode, i.e, if the syndrome is zero, the received word
is accepted as correct, but otherwise it is rejected. Repeat part (b).

9.63. In this problem, we will briefly consider encoders for the (23, 12) and (24, 12) Golay codes.

47

(a) Design a shift register encoder for the (23, 12) Golay code.

(b) By modifying your design in part (a), or otherwise, come up with a design for an encoder for the
(24, 12) extended Golay code.

9.64. Discuss the size and complexity of a syndrome table lookup decoder for the (24, 12) Golay code.

In Probs. 9.65–9.68 we will investigate the ternary Golay code. Observe that in the vector space
GF (3)11 a Hamming sphere of radius 2 contains

1 + 2
(

11
1

)
+ 4

(
11
2

)
= 243 = 35

vectors. This suggests that it might be possible to perfectly pack GF (3)11 with 729 = 36 spheres of radius
2. The ternary Golay code does this. It is an (11,6) linear code over GF (3) whose codewords, when taken as
sphere centers, produce such a packing. The code is defined as follows. Since 35− 1 = 11 · 22, it follows that
GF (35) contains a primitive 11th root of unity, which we shall call β. Since over GF (3) the factorization of
x11−1 is x11−1 = (x−1)g(x)g̃(x), where g(x) = x5 +x4−x3 +x2−1 and g̃(x) = x5−x3 +x2−x−111, we
may assume that β is a zero of g(x). The (11,6) ternary Golay code is then defined to be the cyclic code with
generator polynomial g(x). To show that the spheres of radius 2 around the 729 codewords are disjoint, we
must show that the minimum Hamming distance between codewords is ≥ 5, that is, every nonzero codeword
has weight ≥ 5. The following problems contain a proof of this fact.12

9.65. Show that the code’s minimum weight is ≥ 4. [Hint: Use the BCH argument, Theorem 9.3.].

9.66. Show that if C0 + C1 + · · · + C10 = 0, the codeword C = (C0, C1, . . . , C10) has Hamming weight
divisible by 3. [Hint: See Lemma 3, Section 9.8].

9.67. If, on the other hand, C0 + C1 + · · · + C10 = α �= 0, show that (C0 + α,C1 + α, . . . , C10 + α) is a
codeword and has weight divisible by 3.

9.68. Use the preceding results to show that the code contains no codewords of weight 4, 7, or 10. [Hint:
If the weight is 4, by appropriate scalar multiplication the nonzero components can be transformed to either
(1,1,1,1) or (1,1,1,-1).]

48

