
(Draft of December 11, 2000)
Chapter 8: Cyclic Codes

8.1 Introduction.

At the beginning of Chapter 7, we said that by restricting our attention to linear codes (rather than arbitrary,
unstructured codes), we could hope to find some good codes which are reasonably easy to implement. And it
is true that (via syndrome decoding, for example) a “small” linear code, say with dimension or redundancy
at most 20, can be implemented in hardware without much difficulty. However, in order to obtain the
performance promised by Shannon’s theorems, it is necessary to use larger codes, and in general, a large
code, even if it is linear, will be difficult to implement. For this reason, almost all block codes used in
practice are in fact cyclic codes; cyclic codes form a very small and highly structured subset of the set
of linear codes. In this chapter, we will give a general introduction to cyclic codes, discussing both the
underlying mathematical theory (Sec. 8.1) and the basic hardware circuits used to implement cyclic codes
(Sec. 8.2). In Section 8.3 we will show that Hamming codes can be implemented as cyclic codes, and
in Sections 8.4 and 8.5 we will see how cyclic codes are used to combat burst errors. Our story will be
continued in Chapter 9, where we will study the most important family of cyclic codes yet discovered: the
BCH/Reed-Solomon family.

We begin our studies with the innocuous-appearing definition of the class of cyclic codes.

Definition. An (n, k) linear code over a field F is said to be a cyclic code if, for every codeword C =
(C0, C1, . . . , Cn−1), the right cyclic shift of C, viz. CR = (Cn−1, C0, . . . , Cn−2), is also a codeword.

As we shall see, there are many cyclic codes, but compared to linear codes, they are quite scarce. For
example, there are 11,811 linear (7, 3) codes over GF (2), but only two are cyclic!

Example 8.1. If F is any field, and n is an integer ≥ 3, there are always at least four cyclic codes of length
n over F , usually called the four trivial cyclic codes:
• An (n, 0) code, consisting of just the all-zero codeword, called the no information code.
• An (n, 1) code, consisting of all codewords of the form (a, a, . . . , a), for a ∈ F , called the repetition code.
• An (n, n − 1) code, consisting of all vectors (C0, C1, . . . , Cn−1) such that

∑
i Ci = 0, called the single

parity-check code.
• An (n, n) code, consisting of all vectors of length n, called the no parity code. ❐

For some values of n and F , the trivial cyclic codes described in Example 8.1 are the only cyclic codes
of length n over F (e.g., n = 19 and F = GF (2)). However, there are often other, more interesting cyclic
codes, as the next two examples illustrate.

Example 8.2. Consider the (7, 3) linear code over GF (2) defined by the generator matrix

G =


 1 0 1 1 1 0 0

0 1 0 1 1 1 0
0 0 1 0 1 1 1


 .

This code has eight codewords. Denoting the rows of G by C1,C2,C3, the nonzero codewords are:

C1 = 1011100
C2 = 0101110
C3 = 0010111

C1 + C2 = 1110010
C1 + C3 = 1001011
C2 + C3 = 0111001

C1 + C2 + C3 = 1100101.

1

This code is in fact a cyclic code. To verify this, we need to check that the right cyclic shift of each codeword
is also a codeword. For example, the right cyclic shift of C1 is C2. The complete list of right cyclic shifts
follows:

C1 → C2

C2 → C3

C3 → C1 + C3

C1 + C2 → C2 + C3

C1 + C3 → C1 + C2 + C3

C2 + C3 → C1

C1 + C2 + C3 → C1 + C2.

❐

Example 8.3. Consider the (4, 2) linear code over GF (3) defined by the generator matrix

G =
[

1 0 2 0
1 1 2 2

]
.

This code has nine codewords. Denoting the rows of G by C1 and C2 the nonzero codewords are:

C1 = 1020
2C1 = 2010
C2 = 1122

C1 + C2 = 2112
2C1 + C2 = 0102

2C2 = 2211
C1 + 2C2 = 0201

2C1 + 2C2 = 1221.

This code is also a cyclic code. For example, the right cyclic shift of C1 is 2C1 + C2. The complete list
of right cyclic shifts follows:

C1 → 2C1 + C2

2C1 → C1 + 2C2

C2 → C1 + C2

C1 + C2 → 2C2

2C1 + C2 → 2C1

2C2 → 2C1 + 2C2

C1 + 2C2 → C1

2C1 + 2C2 → C2.

❐

The definition of a cyclic code may seem arbitrary, but in fact there are good reasons for it, which begin
to appear if we introduce the notion of the generating function of a codeword. If C = (C0, · · · , Cn−1) is a
codeword, its generating function is defined to be the polynomial

C(x) = C0 + C1x + · · ·+ Cn−1x
n−1,

2

where x is an indeterminate. The reason this is useful is that by using generating functions, we can give a
simple algebraic characterization of the right cyclic shift of a codeword. In order to give this characterization,
we need to define the important “mod” operator for integers and polynomials.*

Definition. If p and m are integers with m > 0, then “p mod m” denotes the remainder obtained when p
is divided by m; thus p mod m is the unique integer r such that p− r is divisible by m, and 0 ≤ r ≤ m− 1.
Similarly, if P (x) and Q(x) are polynomials, P (x) mod M(x) denotes the remainder when P (x) is divided
by M(x); thus P (x) mod M(x) is the unique polynomial R(x) such that P (x)−R(x) is divisible by M(x),
and degR(x) < degM(x). ❐

Example 8.4. Here are some examples.

7 mod 5 = 2
−6 mod 4 = 2

4 mod 6 = 4
21 mod 7 = 0

x3 mod x2 = 0
x2 mod x3 = x2

x1000 mod (x2 + x + 1) = x

(5x2 + 1) mod (x2 + 1) = −4 (over the reals)
(x + 1)3 mod (x2 + 1) = 0 (over GF (2))

xi mod (xn − 1) = xi mod n

❐

The following Lemma lists the most important properties of the mod operator for polynomials.

Lemma 1.

(i) If degP (x) < degM(x), then P (x) mod M(x) = P (x).
(ii) If M(x) |P (x), then P (x) mod M(x) = 0.
(iii) (P (x) + Q(x)) mod M(x) = P (x) mod M(x) + Q(x) mod M(x).
(iv) (P (x)Q(x)) mod M(x) = (P (x)(Q(x) mod M(x))) mod M(x).
(v) If M(x) |N(x), then (P (x) mod N(x)) mod M(x) = P (x) mod M(x).

Proof: Left as Problem 8.5.
❐

Now we can give the promised algebraic characterization of the right cyclic shift operation.

Theorem 8.1. If C = (C0, C1, · · · , Cn−1) is a codeword with generating function C(x) = C0 + C1x + · · ·+
Cn−1x

n−1, then the generating function CR(x) for the right cyclic shift CR is given by the formula

CR(x) = xC(x) mod (xn − 1).

Proof: Since C(x) = C0 + C1x + · · ·+ Cn−1x
n−1, we have

xC(x) = C0x + · · ·+ Cn−2x
n−1 + Cn−1x

n

CR(x) = Cn−1 + C0x + · · ·+ Cn−2x
n−1.

* This use of “mod” as a binary operator is closely related to, but not identical with, the more familair
use of “mod” as an equivalence relation. Thus Q(x) ≡ P (x) (mod M(x)) (the equivalence relation use of
“mod”) means only that Q(x) − P (x) is divisible by M(x), whereas Q(x) = P (x) mod M(x) (the binary
operator) means that Q(x)− P (x) is divisible by M(x) and degQ(x) < degM(x).

3

Hence xC(x)−CR(x) = Cn−1(xn − 1). Since degCR(x) < deg(xn − 1), and xC(x)−CR(x) is a multiple of
xn − 1, the result follows from the definition of the mod operation. ❐

The generating function for a codeword is so useful that we will often not bother to distinguish between
a codeword and its generating function. Thus for example we might view an (n, k) linear code as a set of
polynomials of (formal) degree n− 1, such that any linear combination of polynomials in the code is again
in the code. From this viewpoint, by Theorem 8.1, a cyclic code is a linear code such that if C(x) is a
codeword, then xC(x) mod (xn − 1) is also. By repeatedly applying the right cyclic shift generation, we
find that xiC(x) mod (xn − 1) is a codeword, for all i ≥ 0 (see Problem 8.6). The following theorem is a
generalization of this observation. For convenience, we introduce the notation

[P (x)]n

as a shorthand for
P (x) mod (xn − 1).

Theorem 8.2. If C is an (n, k) cyclic code, and if C(x) is a codeword in C, then for any polynomial P (x),
[P (x)C(x)]n is also a codeword in C

Proof: Suppose P (x) =
∑k
i=0 Pix

i. Then

[P (x)C(x)]n =

[
(
k∑
i=0

Pix
i)C(x)

]
n

=
k∑
i=0

Pi
[
xiC(x)

]
n

by Lemma 1 (iii). But by the remarks immediately preceeding the statement of this theorem,
[
xiC(x)

]
n

is a codeword for each i, and so, since the code is linear, the linear combination
∑

Pi
[
xiC(x)

]
n

is also a
codeword. ❐

Example 8.5. Consider the (7, 3) cyclic code of Example 8.2. The codeword C1+C3, viewed as a polynomial,
is 1 + x3 + x5 + x6. According to Theorem 8.2, if we multiply this polynomial by any other polynomial, and
reduce the result mod (x7 − 1), the resulting polynomial will also be in the code. For example:[

(1 + x)(1 + x3 + x5 + x6)
]
7

= x + x3 + x4 + x5

= C2[
(1 + x53 + x100)(1 + x3 + x5 + x6)

]
7

= 1 + x + x4 + x6

= C1 + C2 + C3[
(1 + x2 + x3)(1 + x3 + x5 + x6)

]
7

= 0.

❐

The key to the design and analysis of cyclic codes is the generator polynomial.

Definition. If C is a cyclic code, a nonzero polynomial of lowest degree in C is called a generator polynomial
for C. The symbol g(x) is usually reserved to denote a generator polynomial.

Example 8.6. In the code of Example 8.2, the codeword C1, viewed as a polynomial, has lowest degree
among all nonzero codewords, and so g(x) = 1 + x2 + x3 + x4 is the generator polynomial for this code. In
the code of Example 8.3, there are two lowest-degree polynomials, viz. C1 = 2x2 +1 and 2C1 = x2 +2. The
first part of the following lemma shows that the generator polynomial for a cyclic code is always unique up
to multiplication by scalars, and so we are justified in referring to the generator polynomial of a cyclic code,

4

and assuming it is monic. Thus for the code of Example 8.3, normally one would say that g(x) = x2 + 2 is
the generator polynomial. ❐

Lemma 2. Suppose that C is a cyclic code with generator polynomial g(x).
(a) If g′(x) is another generator polynomial, then g′(x) = λg(x), for some nonzero element λ ∈ F .
(b) If P (x) is a polynomial such that [P (x)]n is a codeword, then g(x) divides P (x).

Proof: To prove (a), suppose that g(x) = grx
r + · · · + g0 and g′(x) = g′rx

r + · · · + g′0, with gr �= 0 and
g′r �= 0. Then if λ = g′r/gr the polynomial g′′(x) = g′(x)− λg(x) has degree less than r and is in C. But r is
the lowest possible degree among nonzero codewords in C, so that g′′(x) = 0, i.e., g′(x) = λg(x).

To prove (b), let Q(x) and R(x) be the quotient and remainder obtained when P (x) is divided by g(x),
i.e.,

P (x) = Q(x)g(x) + R(x), (8.1)

with degR < deg g. Reducing each of these polynomials mod xn−1, and using the fact that degR < deg g ≤
n− 1 (the latter inequality since g(x) is a codeword), we obtain

R(x) = [P (x)]n − [Q(x)g(x)]n.

But [P (x)]n is a codeword by assumption, and [Q(x)g(x)]n is a codeword by Theorem 8.2. Thus, since C
is linear, R(x) is a codeword also. But degR < deg g, and g(x) is a nonzero codeword of least degree, so
R(x) = 0, and (8.1) becomes

P (x) = Q(x)g(x),

which shows that g(x) divides P (x). ❐

We can now state and prove the main theorem about cyclic codes. It establishes a 1–1 correspondence
between cyclic codes of length n and monic divisors of xn − 1.

Theorem 8.3.
(a) If C is an (n, k) cyclic code over F , then its generator polynomial is a divisor of xn − 1. Furthermore,

the vector C = (C0, C1, . . . , Cn−1) is in the code if and only if the corresponding generating function
C(x) = C0 + C1x + · · · + Cn−1x

n−1 is divisible by g(x). If k denotes the dimension of C, then k =
n− deg g(x).

(b) Conversely, if g(x) is a divisor of xn − 1, then there is an (n, k) cyclic code with g(x) as its generator
polynomial and k = n − deg g(x), namely, the set of all vectors (C0, C1, . . . , Cn−1) whose generating
functions are divisible by g(x).

Proof of (a): First, let P (x) = xn − 1 in Lemma 2(b); [P (x)]n = 0, which is of course a codeword,
and so g(x) divides xn − 1. Next, by Theorem 8.2, any vector of length n whose generating function is
a multiple of g(x) is a codeword. Conversely, if C(x) = C0 + C1x + · · · + Cnx

n−1 is a codeword, then
[C(x)]n = C(x) and so Lemma 2 implies that g(x) divides C(x). Finally, the assertion about the degree of
g(x) follows since C(x) = C0 + C1x + · · · + Cn−1x

n−1 is a multiple of g(x) if and only if C(x) = g(x)I(x),
where deg I ≤ n− 1− deg g.
Proof of (b): Suppose that g(x) is a divisor of xn − 1. Then C(x) = (C0, C1, . . . , Cn−1) is a multiple of
g(x) if and only if C(x) = g(x)I(x), where deg g + deg I ≤ n− 1. Thus the set of all such words is an (n, k)
linear code, where k = n− deg g. To show that this code is cyclic, we must show that the right cyclic shift
of any codeword is also a codeword. Thus let I(x)g(x) be any codeword; by Theorem 8.1, its right cyclic
shift is [xI(x)g(x)]n. But since g(x) divides xn − 1, we have

[xI(x)g(x)]n mod g(x) = [xI(x)g(x)] mod g(x) (by Lemma 1 (v))
= 0 (by Lemma 1(ii)),

which proves that [xI(x)g(x)]n is a multiple of g(x), so the code is indeed a cyclic code. ❐

5

Theorem 8.3 shows the importance of the generator polynomial of a cyclic code. A closely-related, and
equally important, polynomial is the parity-check polynomial for a cyclic code, which is denoted by h(x),
and defined by

h(x) =
xn − 1
g(x)

.

The following corollaries to Theorem 8.3 give explicit descriptions of generator and parity-check matrices for
a cyclic code, in terms of g(x) and h(x).

Corollary 1. If C is an (n, k) cyclic code with generator polynomial g(x) = g0 + g1x + · · · + grx
r (with

r = n − k), and parity-check polynomial h(x) = h0 + h1x + · · · + hkx
k, then the following matrices are

generator and parity-check matrices for C :

G1 =



g0 g1 · · · · · · gr 0 · · · · · · 0
0 g0 g1 · · · · · · gr 0 · · · 0
...

...
0 · · · · · · 0 g0 g1 · · · · · · gr


 =




g(x)
xg(x)

...
xk−1g(x)




H1 =



hk hk−1 · · · · · · h0 0 · · · · · · 0
0 hk hk−1 · · · · · · h0 0 · · · 0
...

...
0 · · · · · · 0 hk hk−1 · · · · · · h0


 =




h̃(x)
xh̃(x)

...
xr−1h̃(x)


 ,

where h̃(x) = hk + hk−1x + · · · + h0x
k is h(x)’s “reciprocal” polynomial. Furthermore, if the vector I =

(I0, I1, . . . , Ik−1) is encoded as C = IG1 (cf. Eq. (7.1)), then the generating functions I(x) = I0 + I1x +
· · ·+ Ik−1x

k−1 and C(x) = C0 + C1x + · · ·+ Cn−1x
n−1 are related by

C(x) = I(x)g(x).

Proof: The ith row of G1, by definition, is xig(x), for i = 0, 1, . . . , k − 1. Each of these k vectors is in
C by Theorem 8.2, and they are linearly independent since each row has a different degree. Since C is
k-dimensional, it follows that G1 is a generator matrix for C. Furthermore, the vector IG1, where I =
(I0, I1, . . . , Ik−1), has generating function I0g(x) + I1xg(x) + · · ·+ In−1x

n−1g(x) = I(x)g(x).
To prove that H1 is a parity-check matrix for C, note that the inner product of the ith row of G1 and

the jth row of H1 is the coefficient of xk−i+j in the product g(x)h(x). But g(x)h(x) = xn− 1, and since the
index k− i + j ranges from 1 (when i = k− 1 and j = 0) to n− 1 (when i = 0 and j = r− 1), each of these
inner products is zero. Thus each row of H1 is in the nullspace of C; but the nullspace of C is r-dimensional,
and H1 has r linearly independent rows, so H1 is in fact a parity-check matrix for C. ❐

The matrices in Corollary 1 are sometimes useful, but more often, the “systematic” matrices in the
following Corollary 2 are used.

Corollary 2. Let C be an (n, k) cyclic code with generator polynomial g(x). For i = 0, 1, . . . , k−1, let G2,i

be the length n vector whose generating function is G2,i(x) = xr+i − xr+i mod g(x). Then the k× n matrix

G2 =




G2,0

G2,1

...
G2,k−1




is a generator matrix for C. Similarly, if H2,j is the length r vector whose generating function is H2,j(x) =
xj mod g(x), then the r × n matrix

H2 =
[
HT

2,0, H
T
2,1, . . . , H

T
2,n−1

]
6

is a parity-check matrix for C. Furthermore, if the vector I = (I0, I1, . . . , Ik−1) is encoded as C = IG2, then
the generating functions I(x) and C(x) are related by

C(x) = xrI(x)− [xrI(x)] mod g(x).

Also, if the syndrome of the vector R = (R0, R1, . . . , Rn−1) is calculated as ST = H2RT , then the generating
functions R(x) and S(x) are related by

S(x) = R(x) mod g(x).

Proof: The ith row of G2 is a multiple of g(x) and so a codeword of C, because

[xr+i − xr+i mod g(x)] mod g(x) = xr+i mod g(x)− xr+i mod g(x)
= 0

by Lemma 1 parts (iii) and (i). Since G2 has k linearly independent rows (the last k columns of G2 form a
k × k identity matrix), each of which is a codeword, G2 is a generator matrix of C. Furthermore, the vector
IG2, where I = (I0, I1, . . . , Ik−1), has generating function I0(xr−xr mod g(x))+I1(xr+1−xr+1 mod g(x))+
· · ·+ Ik−1(xr+k−1 − xr+k−1 mod g(x)) = xrI(x)− [xrI(x)] mod g(x).

To prove the assertion about H2, note first that H2 has rank r (its first r columns form an r× r identity
matrix). Furthermore, if R = (R0, R1, . . . , Rn−1) is a received word, then H2RT is an r × 1 column vector
with generating function

∑n−1
j=0 Rj(xj mod g(x)) = (

∑n−1
j=0 Rjx

j) mod g(x) = R(x) mod g(x). If R(x) is a
codeword, then R(x) mod g(x) = 0 by Theorem 8.3(a), and so H2RT = 0 for any codeword. Thus shows
that H2 is a parity-check matrix for C. On the other hand, if R is an arbitrary received vector, its syndrome
with respect to H2 is S = H2RT , which, as we have just seen, has generating function S(x) = R(x) mod g(x),
as asserted. ❐

Note: The form of the syndrome relative to the parity-check matrix H2 as described in Corollary 2 is so
natural that it is common to refer to it simply as the remainder syndrome of the vector R with respect to
the cyclic code with generator polynomial g(x). ❐

Example 8.7. In Example 8.6 we saw that the generator polynomial for the (7, 3) cyclic code of Example 8.2 is
g(x) = x4+x3+x2+1. The corresponding parity-check polynomial is then h(x) = (x7+1)/(x4+x3+x2+1) =
x3 + x2 + 1. The eight codewords, as multiples of g(x), are:

C0 = 0 · g(x)
C1 = 1 · g(x)
C2 = x · g(x)

C3 = x2 · g(x)
C4 = (1 + x) · g(x)

C5 = (1 + x2) · g(x)

C6 = (x + x2) · g(x)

C7 = (1 + x + x2) · g(x)

The generator and parity-check matrices described in Corollary 1 are

G1 =


 1 0 1 1 1 0 0

0 1 0 1 1 1 0
0 0 1 0 1 1 1


 =


 g(x)

xg(x)
x2g(x)




H1 =




1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1


 =




h̃(x)
xh̃(x)
x2h̃(x)
x3h̃(x)




7

The generator and parity-check matrices described in Corollary 2 are

G2 =


 1 0 1 1 1 0 0

1 1 1 0 0 1 0
0 1 1 1 0 0 1


 =


x4 − x4 mod g(x)
x5 − x5 mod g(x)
x6 − x6 mod g(x)




H2 =




1 0 0 0 1 1 0
0 1 0 0 0 1 1
0 0 1 0 1 1 1
0 0 0 1 1 0 1


 = [1, x, x2, x3, x4 mod g, x5 mod g, x6 mod g]

Note the appearance of a 3 × 3 identity matrix on the right side of G2, and the 4 × 4 identity matrix on
the left side of H2. This is what makes these matrices “systematic.” If we wish to obtain generator and
parity-check matrices of the form G = [IkA] and H = [−AT In−k], as promised in Theorem 7.1, we can use
the cyclic property of the code, cyclically shifting the rows of G2 three places to the right, and those of H2

three places to the right, thus obtaining

G3 =


 1 0 0 1 0 1 1

0 1 0 1 1 1 0
0 0 1 0 1 1 1




H3 =




1 1 0 1 0 0 0
0 1 1 0 1 0 0
1 1 1 0 0 1 0
1 0 1 0 0 0 1




(For another way to describe G3 and H3, see Problem 8.9.) If we encode the vector I = [101] using G1, the
resulting codeword is (1+x2)(1+x2 +x3 +x4) = 1+x3 +x5 +x6 = [1001011]. On the other hand, if we use
G2 instead, the codeword is x4(1 + x2)− [x4(1 + x2)] mod (x4 + x3 + x2 + 1) = x6 + x4 + x+ 1 = [1100101].
The syndrome of the vector R = [1010011] with respect to H1 is [1101]. (For an efficient way to make this
computation, see Problem 8.10). On the other hand, if we use H2 instead, we find that the “remainder”
syndrome is R(x) mod g(x) = (1 + x2 + x5 + x6) mod (1 + x2 + x3 + x4) = x3 + x2, i.e., S = [0011]. ❐

Example 8.8. In Example 8.6 we saw that the generator polynomial for the (4, 2) GF (3)-cyclic code of
Example 8.3 is g(x) = x2 + 2 = x2− 1. Then the parity-check polynomial is (x4− 1)/(x2− 1) = x2 + 1. The
generator and parity-check matrices of Corollary 1 to Theorem 8.3 are then

G1 =
[

2 0 1 0
0 2 0 1

]

H1 =
[

1 0 1 0
0 1 0 1

]

and

G2 =
[

2 0 1 0
0 2 0 1

]

H2 =
[

1 0 1 0
0 1 0 1

]
It is only a coincidence that G1 = G2 and H1 = H2 in this case. But see Problem 8.21. ❐

According to Theorem 8.3, the cyclic codes of length n over a given field F are in one-to-one correspon-
dence with the monic divisors of xn−1 over F . Plainly then, in order to study cyclic codes over F it is useful
to know how to factor xn− 1 over F . Although we shall not make a systematic study of the factorization of
xn−1 here, in Table 8.1. we give the factorization of xn−1 over GF (2), for 1 ≤ n ≤ 31. This table contains
all the information necessary for a study of cyclic codes of length ≤ 31 over GF (2).

8

n xn + 1 =
1 (x + 1)
2 (x + 1)2

3 (x + 1)(x2 + x + 1)
4 (x + 1)4

5 (x + 1)(x4 + x3 + x2 + x + 1)
6 (x + 1)2(x2 + x + 1)2

7 (x + 1)(x3 + x + 1)(x3 + x2 + 1)
8 (x + 1)8

9 (x + 1)(x2 + x + 1)(x6 + x3 + 1)
10 (x + 1)2(x4 + x3 + x2 + x + 1)2

11 (x + 1)(x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x + 1)
12 (x + 1)4(x2 + x + 1)4

13 (x + 1)(x12 + x11 + x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x + 1)
14 (x + 1)2(x3 + x + 1)2(x3 + x2 + 1)2

15 (x + 1)(x2 + x + 1)(x4 + x + 1)(x4 + x3 + 1)(x4 + x3 + x2 + x + 1)
16 (x + 1)16

17 (x + 1)(x8 + x5 + x4 + x3 + 1)(x8 + x7 + x6 + x4 + x2 + x + 1)
18 (x + 1)2(x2 + x + 1)2(x6 + x3 + 1)2

19 (x + 1)(x18 + x17 + x16 + · · ·+ x + 1)
20 (x + 1)4(x4 + x3 + x2 + x + 1)4

21 (x + 1)(x2 + x + 1)(x3 + x + 1)(x3 + x2 + 1)(x6 + x4 + x2 + x + 1)(x6 + x5 + x4 + x2 + 1)
22 (x + 1)2(x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x + 1)2

23 (x + 1)(x11 + x9 + x7 + x6 + x5 + x + 1)(x11 + x10 + x6 + x5 + x4 + x2 + 1)
24 (x + 1)8(x2 + x + 1)8

25 (x + 1)(x4 + x3 + x2 + x + 1)(x20 + x15 + x10 + x5 + 1)
26 (x + 1)2(x12 + x11 + x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x + 1)2

27 (x + 1)(x2 + x + 1)(x6 + x3 + 1)(x18 + x9 + 1)
28 (x + 1)4(x3 + x + 1)4(x3 + x2 + 1)4

29 (x + 1)(x28 + x27 + · · ·+ x + 1)
30 (x + 1)2(x2 + x + 1)2(x4 + x + 1)2(x4 + x3 + 1)2(x4 + x3 + x2 + x + 1)2

31 (x + 1)(x5 + x2 + 1)(x5 + x3 + 1)(x5 + x3 + x2 + x + 1)
·(x5 + x4 + x2 + x + 1)(x5 + x4 + x3 + x + 1)(x5 + x4 + x3 + x2 + 1)

Table 8.1. Factorization of xn − 1(= xn + 1) into powers
of irreducible polynomials over GF (2), for 1 ≤ n ≤ 31.

Example 8.9. Let’s use Table 8.1 to list all possible binary cyclic codes of length 7. According to Table 8.1,
x7− 1 factors into three distinct irreducible factors: x7− 1 = (x+ 1)(x3 + x+ 1)(x3 + x2 + 1), and so x7− 1
has 23 = 8 distinct divisors g(x). This yields the following list:

(n, k) g(x) comment

(7, 7) 1 no parity code
(7, 6) x + 1 overall parity-check code
(7, 4) x3 + x + 1 Hamming code
(7, 4) x3 + x2 + 1 Hamming code
(7, 3) (x + 1)(x3 + x + 1) Example 8.2 code
(7, 3) (x + 1)(x3 + x2 + 1) Example 8.2 code “reversed”
(7, 1) (x3 + x + 1)(x3 + x2 + 1) repetition code
(7, 0) x7 + 1 no information code

9

input

output

g
2

g 0 g
1

g r _ 1 g r

For example, we assert that the (7, 4) cyclic code with g(x) = x3 + x + 1 is a Hamming code. To see
why this is so, we note that the parity-check polynomial is (x7 + 1)/(x3 + x + 1) = x4 + x2 + x + 1. Thus
by Corollary 1 to Theorem 8.3, a parity-check matrix for this code is

H =


 1 0 1 1 1 0 0

0 1 0 1 1 1 0
0 0 1 0 1 1 1


 .

The columns of H are nonzero and distinct, and so by the definition in Section 7.4, this is indeed a Hamming
code. We leave the investigation of the other “comments” as Problem 8.23.

❐

In Example 8.9, we saw that g(x) = x3 + x + 1 generates a (7, 4) Hamming code. But according to
Table 8.1, g(x) divides not only x7 − 1, but also x14 − 1; in fact, x3 + x + 1 |xn − 1 for any n which is a
multiple of 7 (see Problem 8.24). Thus by Theorem 8.3(b), g(x) generates a whole family of cyclic codes, with
parameters (7, 4), (14, 11), (21, 18), However, all of these codes except the first contain a vector whose
generating function is x7− 1, and so have minimum weight equal to 2. Hence these codes are not interesting
for error correction; we shall call them improper cyclic codes. (See Problem 8.26. Also see Problem 8.27
for a discussion of cyclic codes for which the parity-check polynomial has period less than n.) In the rest
of this chapter, when we refer to an (n, k) cyclic code with generator polynomial g(x), we shall assume it
is a proper cyclic code, i.e., one for which n is the smallest positive integer such that g(x) |xn − 1. This
integer is sometimes called the period of g(x), since it is the period of the sequence [xi mod g(x)]i≥0. With
this convention established, we are ready to continue our study of cyclic codes.

8.2. Shift-Register Encoders for Cyclic Codes.
Now that we know by Theorem 8.3 that every cyclic code is characterized by its generator polynomial, we
can begin to see why cyclic codes are much easier to implement than arbitrary linear codes. In this section
we shall show, in fact, that every cyclic code can be encoded with a simple finite-state machine called a
shift-register encoder.

Recall that an encoding algorithm for an (n, k) linear code, cyclic or not, is a rule for mapping the set
of length-k information sequences (I0, I1, . . . , Ik−1) onto the set of length-n codewords (C0, C1, . . . , Cn−1),
or equivalently for mapping the information polynomials I(x) = I0 + I1x + · · · + Ik−1x

k−1 onto the set of
code polynomials C(x) = C0 + C1x + · · ·+ Cn−1x

n−1. If the code is cyclic, Theorem 8.3 tells us that C(x)
is a codeword if and only if C(x) is a multiple of g(x), and so, as we saw in Corollary 1 to Theorem 8.3, one
way to change an information polynomial I(x) into a code polynomial is simply to multiply I(x) by g(x):

I(x)→ I(x)g(x). (8.2)

It turns out that polynomial multiplication is easy to implement using something called shift-register logic,
and we shall now make a brief study of this subject.

Figure 8.1 is an abstract representation of a machine capable of multiplying an arbitrary polynomial
I(x) by a fixed polynomial g(x). Before proving that the circuit works, we had better explain its various
components.

Figure 8.1. A shift register circuit for multiplying by
g(x) = g0+g1x+· · ·+grx

r. Alternatively, this is an encoder for an
(n, k) cyclic code with generator polynomial g(x), with r = n− k.

10

a flip flop

an adder

constant multiplier

a

The circuit in Figure 8.1 is build by connecting together three types of components: flip-flops, adders,
and constant multipliers. The most important of these is the flip-flop, sometimes called a delay element:

A flip-flop is a device which can store one element from the field F . Not pictured in our simplified circuit
diagrams, but an important part of them, is an external clock which generates a timing signal (“tick”) every
t0 seconds. When the clock ticks, the contents of the flip-flop are shifted out of the flip-flop in the direction
of the arrow, through the circuit, until the next flip-flop is reached. Here the signal stops until the next tick.
The contents of the shift register can be modified by the circuit between successive flip-flops, which is where
the other two logic elements come in. The two-input adder, which looks like this:

is a device that computes the sum of its two input signals. (The circuit is always arranged in such a way
that after every tick each input to the adder receives exactly one signal, so that the adder’s output is always
unambiguous.) Finally we come to the simplest circuit element, the constant multiplier:

This device simply multiplies its input by the constant a, with no delay.
Now let’s see if we can understand why the circuit of Figure 8.1 can be used for polynomial multiplication.

We first write out in detail the formulas for the coefficients of the product C(x) = C0+C1x+ · · ·+Cn−1x
n−1,

where C(x) = I(x)g(x):

C0 = I0g0

C1 = I0g1 + I1g0

C2 = I0g2 + I1g1 + I2g0

...
Cj = I0gj + I1gj−1 + · · ·+ Ijg0

...
Cn−1 = Ik−1gr.

(8.3)

The flip-flops of Fig. 8.1 are initially filled with 0’s. We then feed in the sequence I0, . . . , Ik−1, followed by
r = n− k 0’s, one bit every tick, to the shift register via the input arrow. Let us now study the behavior of

11

Out

In 1 2 3 4

the circuit at each tick of the clock:

Tick 0: Input: I0
Shift-register contents: [0, 0, 0, . . . , 0]
Output: I0g0

Tick 1: Input I1
Shift-register contents: [I0, 0, 0, . . . , 0]
Output: I0g1 + I1g0
...

Tick j: Input: Ij
Shift-register contents: [Ij−1, · · · , I1, I0, . . . , 0]
Output: I0gj + I1gj−1 + . . . + Ijg0

...
Tick n-1: Input: 0

Shift-register contents: [0, . . . , 0, Ik−1]
Output: Ik−1gr

Hence if the circuit in Figure 8.1 is initialized by placing r 0’s in the flip-flops, and given the n-symbol
input sequence (I0, I1, . . . , Ik−1, 0, . . . , 0), the output sequence will indeed be (C0, C1, . . . , Cn−1), where the
Cj ’s are defined by Eq. (8.3), and so this circuit can be used as an encoder for the (n, k) cyclic code with
generator polynomial g(x).

Comment. The preceeding description is for a “generic” shift-register circuit, capable of performing arithmetic
in an arbitrary field F . The required devices (flip-flop, adders, multipliers) are not “off-the-shelf” items,
except when the field is GF (2). In this case, however, these devices are very simple indeed:

flip-flop = D flip-flop
adder = xor gate
0-multiplier = no connection
1-multiplier = direct wire

Example 8.10. The generator polynomial for the (7, 3) binary cyclic code of Example 8.2 is g(x) = x4 +
x3 + x2 + 1, as we saw in Example 8.6. The corresponding shift-register encoder is shown in Figure 8.2. If
(I0, I1, I2) are the three information bits to be encoded, the four flip-flops should be initialized to 0, and
the seven bits (I0, I1, I2, 0, 0, 0, 0) should be used as inputs to the encoder. These seven input bits will then
produce seven output bits (C0, C1, C2, C3, C4, C5, C6), which is the corresponding codeword. For example, if
the information bits are (1, 0, 0), the corresponding codeword will be the “impulse response” (1, 0, 1, 1, 1, 0, 0),
which is in fact the generator polynomial 1 + x2 + x3 + x4 (and also the codeword C1 from Example 8.2).

❐

Figure 8.2. Nonsystematic encoder for the (7, 3) cyclic
code with generator polynomial g(x) = 1 + x2 + x3 + x4.

12

In

_ g 0
_ g1

s1s 0 sr _
1

_ g r 1_

In

(b)

(a)

The encoders of Figures 8.1 and 8.2 could hardly be simpler, but they are unfortunately not system-
atic, i.e., the information bits (I0, I1, . . . , Ik−1) do not appear unchanged in the corresponding codeword
(C0, C1, . . . , Cn−1). It is possible, however, to design a systematic shift-register encoder for any cyclic code
which is only slightly more complex than the nonsystematic one. The idea is to use the result of Theorem 8.3,
Corollary 2, which says that if I(x) is an information polynomial, then

I(x)→ xrI(x)− [xrI(x)] mod g(x) (8.4)

is a systematic encoding rule for a cyclic code with generator polynomial g(x). The central component in
such an encoder will be a “mod g(x)” circuit, where g(x) is the code’s generator polynomial. Figure 8.3(a)
shows such a circuit, if g(x) = xr + gr−1x

r−1 + · · ·+ g0.

Figure 8.3. (a). A general “mod g(x)” shift-register circuit,
where g(x) = xr + gr−1x

r−1 + · · · + g0. (b) A specific “mod
x4 + x3 + x2 + 1” shift-register, where all arithmetic is mod 2.

In order to see why the circuit of Figure 8.3(a) is able to perform a “mod g(x)” calculation, we focus
on the shift-register contents [s0, s1, . . . , sr−1], which we call the state vector of the machine, and on the
corresponding generating function S(x) = s0 + s1x+ · · ·+ sr−1x

r−1, which we call the state polynomial. We
begin with a lemma which explains how the state changes in response to an input.

Lemma 3. If the circuit in Figure 8.3(a) has state polynomial S(x), and the input is s, then the next state
polynomial will be

S′(x) = (s + xS(x)) mod g(x).

13

Proof: If the present state vector is S = [s0, . . . , sr−1] and the input is s, then by our rules describing the
building blocks of the circuit, the next state vector will be, by definition,

S′ = [s− g0sr−1, s0 − g1sr−1, . . . , sr−2 − gr−1sr−1] .
Hence the next state polynomial is

S′(x) = s + s0x + · · ·+ sr−2x
r−1 − sr−1(g0 + g1x + . . . + gr−1x

r−1)
= s + xS(x)− sr−1g(x).

Thus S′(x) is a polynomial of degree < deg g(x) such that (s + xS(x))− S′(x) is a multiple of g(x), and so
S′(x) = (s + xS(x)) mod g(x), by Lemma 1 (iii). ❐

Theorem 8.4. If the circuit of Figure 8.3(a) is initialized by setting s0 = s1 = . . . = sr−1 = 0, and then
given the input sequence a0, a1, a2, . . . , (a0 is input at the 0th tick, a1 at the first tick, etc.), then after the
tth tick, the state polynomial will be

St(x) =
t∑

j=0

ajx
t−j mod g(x).

Proof: We use induction on t. For t = 0, 1, . . . , r− 1, the state vector is St = [at, at−1, . . . , a0,

r−t−1︷ ︸︸ ︷
0, . . . , 0], and

the statement of the theorem is a tautology. Assuming then that the theorem is true for St(x), we consider
St+1(x):

St+1(x) = at+1 + xSt(x) mod g(x) (Lemma 3)

= at+1 + x(
t∑

j=0

ajx
t−j mod g(x)) mod g(x) (induction hypothesis)

= at+1 + (
t∑

j=0

ajx
t+1−j) mod g(x) (Lemma 1(iv))

=
t+1∑
j=0

ajx
t+1−j mod g(x) (Lemma 1(i) and (iii)),

as asserted. ❐

Theorem 8.4 explains why the circuit of Figure 8.3(a) is called a “mod g(x) circuit.” Our next goal is
to use it, together with the encoding rule (8.4), to build a systematic shift-register encoder for a cyclic code
with generator polynomial g(x). The encoding rule (8.4) requires us to compute

[xrI(x)] mod g(x) =
n−1∑
j=r

Ij−rx
j mod g(x).

According to Theorem 8.4, to compute this, we can give the mod g(x) circuit the n-symbol input sequence

(Ik−1, Ik−2, . . . , I0,

r︷ ︸︸ ︷
0, 0, . . . , 0). However, since a systematic encoder could output the k information symbols

unchanged on ticks 0 through k−1, it would like to start outputting the parity-checks, i.e., the coefficients of
[xrI(x)] mod g(x), on the kth tick, but will have to wait for r more ticks before [xrI(x)] mod g(x) is ready.
Fortunately, it is possible to avoid this r tick “down time” by using the circuit shown in Figure 8.4(a).

In the circuit of Figure 8.4(a), the input bits are fed into the right side of the shift-register, rather then
the left, as in Figure 8.3. The result is that if the input stream is a0, a1, . . . , after the tth tick, the shift-
register’s state polynomial will be

∑t
j=0 ajx

r+t−j mod g(x), rather than
∑t
j=0 ajx

t−j mod g(x). (To verify
this assertion, do Problem 8.31). Thus if the encoder inputs the k information symbols Ik−1, Ik−2, . . . , I0
to the shift-register of Figure 8.4, the coefficients of [xrI(x)] mod g(x) will be ready, starting with the
kth tick, as desired. A complete systematic encoder based on the shift-register of Figure 8.4(a) is shown
in Figure 8.5(a). Note that as compared to the nonsystematic encoder of Figure 8.1, in the encoder of
Figure 8.5(a), the information symbols are sent to the encoder in the reverse order, viz., Ik−1, . . . , I0, and
the codeword components are also sent to the channel in the reverse order, viz., Cn−1, Cn−2, . . . , C1, C0.

14

_
0

_ g1

s1s0 sr _1

_ g

In

r-1

(a)

(b)
In

+++

Figure 8.4. (a) A general shift register needed to build an n-tick
systematic encoder for a cyclic code with generator polynomial

g(x) = g0+g1x+· · ·+grx
r. (b) Special case g(x) = x4+x3+x2+1.

Example 8.11. If we apply the general construction described in Figure 8.5(a) to the special case of g(x) =
x4 + x3 + x2 + 1, over the field GF (2), we get the encoder depicted in Figure 8.5(b). If, for example, the
information sequence (I2, I1, I0) = (1, 1, 0), followed by (0, 0, 0, 0) is used as the input sequence to the encoder
circuit of Figure 8.5(b), the output will be (1, 1, 0, 1, 0, 0, 1), as detailded in the following table.

tick input SR contents output
0 1 1011 1
1 1 0101 1
2 0 1001 0
3 0 0100 1
4 0 0010 0
5 0 0001 0
6 0 0000 1

Recalling that the components appear in reverse order, we see that this codeword is the same as codeword
C1 + C3 in Example 8.2. ❐

We will conclude this section with a brief discussion of a third type of shift-register encoder for a cyclic
code, which is based on the code’s parity-check polynomial. Recall from Section 8.1 that if C is an (n, k)
cyclic code with generator polynomial g(x), its parity-check polynomial h(x) = h0 + h1x + · · · + hkx

k is
defined as

h(x) =
xn − 1
g(x)

. (8.5)

Since every codeword C(x) is by Theorem 8.3 a multiple of g(x), it follows from (8.5) that C(x)h(x) is a
multiple of g(x)h(x) = xn − 1, i.e.,

[C(x)h(x)]n = 0. (8.6)

15

In

ut

In

ut

first 3 ticks closed
last 4 ticks open

first 3 ticks down
last 4 ticks up

(a)

(b)

g0
_ g

r 1_
_

1
_

Switch A: first k ticks closed
 last r ticks open

Switch B: first k ticks dowm
 last r ticks up

A

B

Figure 8.5. (a) An n-tick systematic encoder for a cyclic code
with generator polynomial g(x) = g0 + g1x + · · ·+ gr−1x

r−1 + xr.
(b) Special case g(x) = x4 + x3 + x2 + 1.

Equation (8.6) places strong conditions on the coefficients Ci of the codeword C(x), as the following theorem
shows.

Theorem 8.5. For i = 0, 1, . . . , n− 1, we have

k∑
j=0

hjC(i−j) mod n = 0.

Proof: We have

h(x)C(x) =


 k∑
j=0

hjx
j


 (

n−1∑
m=0

Cmxm

)

=
k∑
j=0

hj

(
n−1∑
m=0

Cmxj+m

)
.

16

If we reduce this expression mod(xn − 1), and use the fact that xi mod (xn − 1) = xi mod n (see Example
8.4), we find

[h(x)C(x)]n =
k∑
j=0

hj

(
n−1∑
m=0

Cmx(j+m) mod n

)
. (8.7)

Since by (8.6), [h(x)C(x)]n = 0, it follows that each coefficient of [h(x)C(n)]n is zero as well. But from (8.7)
it follows that for i = 0, 1, . . . , n− 1, the coefficient of xi in [h(x)C(n)]n is

k∑
j=0

hj · coefficient of xi in

{
n−1∑
m=0

Cmx(j+m) mod n

}
.

If m ∈ {0, 1, . . . , n − 1}, the exponent (j + m) mod n will equal i if and only if m = (i − j) mod n (see
Problem 8.4), and so the coefficient of xi in [h(x)C(x)]n is

k∑
j=0

hjC(i−j) mod n,

which must therefore be zero. ❐

Corollary. If h0 = 1, then for i = k, k + 1, . . . , n− 1,

Ci = −
k∑
j=1

hjCi−j .

Proof: If k ≤ i ≤ n− 1, then for j = 0, 1 . . . , k we have (i− j) mod n = i− j, and Theorem 8.5 becomes

k∑
j=0

hjCi−j = 0.

If h0 = 1, this last equation can be rearranged to give the result stated. ❐

The Corollary to Theorem 8.5 says that once the first k components C0, C1, . . . , Ck−1 of a codeword
are known, the remaining r components Ck, Ck+1, . . . , Cn−1 can be computed by linear recursion, i.e. each
new component is a fixed linear combination of the previous k components. This fact leads immediately to
a shift-register encoder, because it is easy to design a shift register circuit that can implement a given linear
recursion; see Figure 8.6.

Figure 8.6(a) shows a k-stage shift register circuit capable of generating any sequence (S0, S1, S2, . . .)
that satisfies the linear recursion St = −

∑k
j=1 hjSt−j , where h1, h2, . . . , hk are fixed constants. The circuit

must be initalized by loading the k flip-flops with the k initial values S0, S1, . . . , Sk−1 (with S0 occupying the
rightmost flip-flop). Then, for t ≥ k, if the shift-register contents are (St−1, . . . , St−k), after the next tick, the
shift-register contents will be (St, St−1 · · ·St−k+1). Figure 8.6(b) shows the special case h(x) = x3 + x2 + 1,
corresponding to the recursion St = St−2 + St−3, for t ≥ 3, over the binary field GF (2).

It should be clear how to use the shift register circuit of Figure 8.6(a) to build a systematic encoder
for a cyclic code with parity-check polynomial h(x) = 1 + h1x + · · ·+ hkx

k (see Figure 8.7(a)). During the
first k ticks the switch is in the “down” position and the k information symbols are simultaneously sent out
to the channel, and loaded into the k-stage shift register. Then the switch is put in the “up” position, and
during the remaining r ticks, the shift-register circuit calculates the remaining r codeword components via
the recursion Ci = −

∑k
j=1 hjCi−j . Notice that the systematic “h(x) encoder” of Figure 8.7 differs from

the systematic “g(x) encoder” of Figure 8.5 in two important ways: In the g(x) encoder, the information
symbols (I0, I1, . . . , Ik−1) occupy codeword components Cr, Cr+1, . . . , Cn−1r, and the codeword symbols are
sent to the channel in the reverse order Cn−1, Cn−2, . . . , C0, whereas in the h(x) encoder the information
symbols occupy codeword components C0, C1, . . . , Ck−1 and the codeword symbols are sent to the channel
in the natural order C0, C1, . . . , Cn−1.

17

_
1h

S t _ 1 S t _ kt _ 2S

_ h2
_ hk _ 1

_ hk

(a)

(b)

Figure 8.6. (a) A shift-register circuit that implements the
kth order linear recursion St = −

∑k
j=1 hjSt−j . (b) The special

case St = St−2 + St−3, corresponding to h(x) = 1 + x2 + x3.

Example 8.12. If we apply the general construction of Figure 8.7(a) to the particular (7, 3) binary cyclic code
with g(x) = x4 + x3 + x2 + 1, and h(x) = x3 + x2 + 1, we get the encoder shown in Figure 8.7(b). Thus for
example, if the information symbols are (I0, I1, I2) = (1, 1, 0), the encoder of Figure 8.7(b) implements the
recursion Ci = Ci−2 +Ci−3 and produces the codeword (1, 1, 0, 0, 1, 0, 1), which is codeword C1 +C2 +C3 in
Example 8.2. Notice also that the g(x) encoder for this code, illustrated in Figure 8.5b needs four flip-flops
and 3 mod-2 adders whereas the h(x)-encoder in Figure 8.7(b) only needs three flip-flops and one mod-2
adder. As a general rule the h(x) encoder will be simpler when k < r, i.e. k < n/2. ❐

18

_
1h _ h2

_
hk

_
1

_ hk

OutIn

OutIn

first 3 ticks: down

last 4 ticks: up

(a)

(b)

first k ticks: down

last r ticks: up

Figure 8.7. (a) A systematic shift-register encoder
for an (n, k) cyclic code with parity-check polynomial

h(x) = 1 + h1x + · · ·+ hkx
k. (b) Special case h(x) = 1 + x2 + x3.

8.3. Cyclic Hamming Codes.†

In Section 7.4 we defined a binary Hamming code of length 2m− 1 to be any linear code whose parity-check
matrix has as columns the 2m − 1 nonzero binary vectors of length m, arranged in any order. For example,
the following parity-check matrix defines a (7, 4) Hamming code (Cf. the matrix H3 in Section 7.4):

H =


 0 1 1 1 1 0 0

1 0 1 1 0 1 0
1 1 0 1 0 0 1


 .

There are of course (2m−1)! ways to order these columns, and although any one of these orderings produces
a perfect single-error correcting code, some orderings are better than others from an implementational
standpoint. In fact, we shall see in this section that it is possible to choose an ordering that produces a

† This section assumes the reader to be familiar with the theory of finite fields, and may be omitted on
first reading.

19

cyclic version of the Hamming code, which leads to a simple shift-register implementation of both the encoder
and the decoder. To describe the appropriate ordering, we must assume the reader to be familiar with the
finite field GF (2m), in which each element is represented by a binary vector of length m. (In Appendix C
we give a summary of the needed facts.)

To obtain a cyclic Hamming code of length 2m − 1, we begin with a primitive root α ∈ GF (2m) and
use it to define a linear code C as follows. A vector C = (C0, C1, . . . , Cn−1) * with components in GF (2) is
in C if and only if

C0 + C1α + · · ·+ Cn−1α
n−1 = 0. (8.8)

Alternatively, C is the binary linear code defined by the 1× n parity-check matrix

H = [1 α α2 · · · αn−1] . (8.9)

We shall soon prove that the code defined by (8.8) or (8.9) is a cyclic Hamming code. For now, the
important thing to notice about this definition is that the codeword components are in the binary field
GF (2) but the entries in the parity-check matrix are in the extension field GF (2m). There are, as we shall
see, many advantages to this “two-field” approach. Still, it is possible to define the same code via a more
conventional (and more complicated) binary parity-check matrix, by replacing each of the powers of α in H
by its representation as an m-bit column vector. For Example, with m = 3, if α is a primitive root in GF (23)
satisfying α3 = α + 1, then Table 8.2 shows the powers of α represented as three-dimensional vectors.

i αi

0 001
1 010
2 100
3 011
4 110
5 111
6 101

Table 8.2. The powers of α in GF (8), where α3 = α + 1.

Thus the 1× 7 GF (8)-matrix H in (8.9) defines the same binary code as the following 3× 7 binary matrix
H ′:

H ′ =


 0 0 1 0 1 1 1

0 1 0 1 1 1 0
1 0 0 1 0 1 1


 .

The following theorem is the main result of this section.

Theorem 8.6. The code defined above (i.e., by (8.8) or (8.9)) is an (n, n − m) binary cyclic code with
generator polynomial g(x), the minimal polynomial of α. Furthermore, its minimum distance is 3, so that
it is a Hamming code.

Proof: It is clear that the code is a binary linear code of length n. We need to show that it is cyclic, and
that g(x) is the generator polynomial. To show that it is cyclic, note that if we multiply Equation (8.8) by
α, and use the fact that αn = 1, we get

Cn−1 + C0α + · · ·+ Cn−2α
n−2 = 0.

Thus if C satisfies (8.8), so does CR, and so the code is cyclic. To show that g(x) is the generator polynomial,
we note that (8.8) is equivalent to C(α) = 0, where C(x) = C0+C1x+· · ·+Cn−1x

n−1 is the code polynomial,

* Here and hereafter in this section, we adopt the convention that n = 2m − 1.

20

and observe that this is true if and only if C(x) is a multiple of α’s minimal polynomial g(x). Thus the code
consists of all polynomials of degree n − 1 or less which are multiples of g(x), and hence by Theorem 8.3,
g(x) is the code’s generator polynomial.

To complete the proof, we need to show that the code’s minimum distance dmin is 3. Since the code is
linear, dmin = wmin. We use the definition (8.8); if there were a codeword of weight 1, then αi = 0 for some
i, which is impossible. Similarly, a word of weight 2 could exist if and only if αi + αj = 0 for some i and j
with 0 ≤ i < j ≤ n−1. Dividing by αi, this becomes 1+αj−i = 0, which is impossible, because the smallest
positive power of α equal to 1 is αn. Finally we note that there are many words of weight 3; for example, if
1 + α = αj , then there is a codeword of weight 3 with nonzero components C0, C1, and Cj . ❐

Now that we know that there are cyclic Hamming codes, it follows from the results in Section 8.2 that
it is possible to build simple shift-register encoders for Hamming codes, based on the generator polynomial.
Since the generator polynomial for a Hamming code must be a primitive polynomial, in order to implement
a cyclic Hamming code of length 2m − 1, it is necessary to have a primitive polynomial of degree m. In
Table 8.3 we list one primitive polynomial of degree m, for 1 ≤ m ≤ 12. For a given value of m, there will
in general be many primitivie polynomials of degree m, but the ones in Table 8.3 are chosen to have the
fewest possible nonzero coefficients, which will lead to shift-register encoders with the fewest possible mod-2
adders.

m primitive polynomial of degree m

1 x + 1
2 x2 + x + 1
3 x3 + x + 1
4 x4 + x + 1
5 x5 + x2 + 1
6 x6 + x + 1
7 x7 + x + 1
8 x8 + x7 + x2 + x + 1
9 x9 + x4 + 1

10 x10 + x3 + 1
11 x11 + x2 + 1
12 x12 + x6 + x4 + x + 1

Table 8.3. Some primitive polynomials—possible
generator polynomials for Hamming codes.

More important than the encoding simplicity of Hamming codes, however, is the fact it is also possible
to build simple decoders for them. We illustrate such a decoder for the (7, 4) Hamming code with generator
polynomial g(x) = x3 + x + 1 in Figure 8.8. The decoder consists of three main parts, two shift register
circuits, and an AND gate. The upper shift register is a “mod g(x)” circuit, and the lower shift register is a
“mod xn + 1” circuit. The AND gate outputs a 1 if the upper shift-register contains the pattern 10 · · · 0, and
otherwise it outputs 0. We will assume that the transmitted codeword is C(x) = (C0, C1, . . . , Cn−1) and the
received word is R(x) = (R0, R1, . . . , Rn−1), with R(x) = C(x) + E(x), where E(x) = (E0, E1, . . . , En−1) is
the error pattern.

In the decoding circuit of Figure 8.8, the noisy codeword (R0, R1, . . . , Rn−1) is clocked in from the left,
in the reverse order (i.e., Rn−1 goes first), so that (by Theorem 8.4) after n ticks the upper shift register
contains R(x) mod g(x), and the lower shift-register contains R(x) mod xn+1, i.e., (R0, R1, . . . , Rn−1). Since
R(x) = C(x) + E(x), and C(x) mod g(x) = 0, since C(x) is a codeword, in fact the upper shift register will
contain E(x) mod g(x). If there are no errors, then E(x) = 0 and the upper shift register will contain all
zeros. If there is one error in the eth position then E(x) = xe, where 0 ≤ e ≤ n− 1.

At this point, switch A is opened, switch B is closed, and the two shift registers run autonomously for
n more ticks. We shall call these n ticks the decoding cycle. At the end of the decoding cycle, if there is at

21

++

++

Switch A:

closed for first n ticks

open for next n ticks

mod g(x) circuit

AND gate: 10...0 recognizer

mod (x - 1) circuit
n

Switch B: open for first n ticks

 closed for next n ticks

Figure 8.8. A decoding circuit for the (7, 4) Hamming
code with generator polynomial g(x) = x3 + x + 1.

most one error, the original codeword C(x) will appear in the lower shift register. Let us see why this is so.
After the tth tick of the decoding cycle, the contents of the upper shift will be xtE(x) mod g(x) and

the lower shift register will contain xtR(x) mod xn + 1, i.e. the tth right cyclic shift (Rn−t, . . . , Rn−t−1)
of the received word. The two shift registers are connected via switch B by the AND gate, which outputs
a 1 if and only if the upper shift register contains 10 · · · 0, i.e., iff xtE(x) mod g(x) = 1. If there are no
errors, E(x) = 0 and so the AND gate will never be triggered, so that after the decoding cycle, the lower shift
register will contain the received word, with no changes. However, if there is one error, in the eth position,
so that E(x) = xe, then after (n− e) mod n ticks of the decoding cycle, the upper shift register will contain
xn−exe mod g(x) = xn mod g(x) = 1, since g(x) is a divisor of xn − 1. At this point the lower shift register
will contain (Re, Re+1, . . . , Re−1) and on the next tick the AND gate will output a 1 and complement the
erroneous component Re of the received word, i.e., the error will be corrected. Then after (e − 1) mod n
further ticks, the received word will have completed its circular journey around the lower shift register, and
will appear, with its error corrected, in the lower shift register.

In Section 8.5, we will see how to generalize the circuit of Figure 8.8 in order to build a decoder for
a cyclic burst error-correcting code. The underlying theory for burst error correction will be presented in
Section 8.4. (Incidentally, the dual codes of cyclic Hamming codes are also interesting and important. They
are covered briefly in Problem 8.41).

22

8.4. Burst Error Correction
On many channels of practical importance, errors, when they occur, tend to occur in bursts. Physically, a
burst of errors occurs when for some reason the channel noise severity increases for a brief time, and then
returns to normal. In this section we will see how cyclic codes can be used to detect and correct error bursts.

We begin with a purely mathematical definition of an error burst. If a codeword C is transmitted, and
is received as R = C + E, then the error vector E is called a burst of length b if the nonzero components of
E are confined to b consecutive components. For example E = (010000110) is a burst of length 7:

∗ ∗ ∗ ∗ ∗ ∗ ∗
0 1 0 0 0 0 1 1 0

(In the display, the ∗’s mark the error burst.) Since we will be correcting bursts of errors with cyclic codes,
for technical reasons we also need to define a cyclic burst. An error vector E is called a cyclic burst of length b
if its nonzero components are confined to b cyclically consecutive components. For example, the error vector
E = (010000110) cited above as a burst of length 7 is also a cyclic burst of length 5:

∗ ∗ ∗ ∗ ∗
0 1 0 0 0 0 1 1 0

In the rest of this section, “burst” will always mean “cyclic burst”.
It is useful to have a compact description of a burst error vector, and so we introduce the notion of the

pattern and location of a burst. If E is a nonzero burst error vector, its burst pattern is the string of symbols
beginning with the first nonzero symbol in E and ending with the last nonzero symbol. The burst’s location
is the index of the first nonzero symbol in the burst. For example, the vector E = (010000110), viewed as a
burst of length 7, has burst pattern 1000011 and burst location 1 (assuming the components are numbered
0, 1, . . . , 8). Unfortunately, the “burst pattern-burst location” description of most vectors E isn’t unique,
since any nonzero symbol in E can be taken as the first symbol in a cyclic burst. Thus an error vector of
weight w will have w burst descriptions. For example, E = (010000110) has three burst descriptions:

pattern location
1000011 1
11001 6

100100001 7

This ambiguity is annoying but usually not serious, since the correctable bursts that occur in practice tend
to be quite short, and a short burst can have only one short description, as the following theorem shows.

Theorem 8.7. Suppose E is an error vector of length n with two burst descriptions (pattern1, location1) and
(pattern2, location2). If length(pattern1)+ length(pattern2) ≤ n+1, then the two descriptions are identical,
i.e., pattern1 = pattern2 and location1 = location2.

Proof: As noted above, if E has weight w, then E has exactly w different burst descriptions. If w = 0 or 1,
therefore, there is nothing to prove, so we assume w ≥ 2.

For a given burst description of E, the pattern will contain all of E’s nonzero components, and so
the components of E not included in the pattern will form a cyclic run of 0’s, beginning just after the
last nonzero component in the pattern, and continuing until just before the first nonzero component in the
pattern. The set of indices corresponding to this run of 0′s we call the zero run associated with the given
burst description. For example, for E = (010000110), as we saw above, there are three burst descriptions.
In the first of these descriptions, i.e., 100011, the pattern begins at position 1 and ends at position 7. Thus
the zero run associated with this burst description is (0, 8). Altogether there are three zero runs, one for
each of the burst descriptions of E:

pattern location zero run
1000011 1 (8,0)
11001 6 (2,3,4,5)

100100001 7 none

23

(In the last burst description, the zero run is empty, which we indicate by the word “none.”) Plainly the
zero runs associated with different burst descriptions are disjoint, and the total length of all of the zero runs
is n− w, where w is the weight of E. To prove the theorem, we note that if the two burst descriptions

(pattern1, location1) and (pattern2, location2)

of E are different, then since their zero runs are disjoint they account for (n − length(pattern1)) + (n −
length(pattern2)) zeros in E. But since length(pattern1)+ length(pattern2) ≤ n+1, this number is ≥ n− 1,
which contradicts the fact that E has weight ≥ 2. Thus the burst descriptions must be identical. ❐

Corollary. An error vector E can have at most one description as a burst of length ≤ (n + 1)/2.

Proof: Two distinct descriptions of length ≤ (n + 1)/2 would contradict Theorem 8.7. ❐

With the help of Theorem 8.7, we can now count the number of burst patterns of a given length.

Theorem 8.8. Over a two-letter alphabet, there are exactly n2b−1 + 1 vectors of length n which are bursts
of length ≤ b, provided 1 ≤ b ≤ (n + 1)/2.

Proof: By the Corollary to Theorem 8.7, if b ≤ (n+1)/2, a nonzero burst of length b has a unique description
(as a burst of length ≤ b). There are n possibilities for the location. The pattern must start with a 1 and
have length ≤ b, which means that the possible patterns are in one-to-one correspondence with the 2b−1

binary strings of length b which begin with a 1. Thus there are 2b−1 possible patterns, and so a total of
n · 2b−1 nonzero bursts of length ≤ b. Adding 1 to this number to account for the all-zero burst, we get
n2b−1 + 1, as asserted. ❐

The next two theorems give useful bounds on the size of codes which correct burst errors. For simplicity,
we shall call a code capable of correcting all burst error patterns of length ≤ b a burst-b error correcting
code.

Theorem 8.9. (The Hamming Bound for burst error correction.) If 1 ≤ b ≤ (n + 1)/2, a binary burst-b
error correcting code has at most 2n/(n2b−1 + 1) codewords.

Proof: By Theorem 8.8 there are n2b−1 + 1 burst error patterns of length ≤ b. If there are M codewords,
there are then M(n2b−1 + 1) words which differ from a codeword by a burst of length ≤ b. These words
must all be distinct, and so M(n2b−1 + 1) ≤ 2n. ❐

Corollary (The Abramson Bounds). If 1 ≤ b ≤ (n + 1)/2, a binary linear (n, k) linear burst-b error
correcting code must satisfy

n ≤ 2r−b+1 − 1, (strong Abramson bound)

where r = n− k is the code’s redundancy. An alternative formulation is

r ≥ �log2(n + 1)�+ (b− 1). (weak Abramson bound)

Proof: For a linear (n, k) code there are M = 2k codewords, and so by Theorem 8.9, 2k ≤ 2n/(n2b−1 + 1).
Rearranging this, we get n ≤ 2r−b+1 − 2−b+1. Since n must be an integer, this bound can be improved to
n ≤ 2r−b+1 − 1, the strong Abramson bound. Rearranging this to obtain a bound on r, we get the weak
Abramson bound. ❐

Theorem 8.10. If b ≤ n/2, a binary burst-b error correcting code has at most 2n−2b codewords.

Proof: If M > 2n−2b, then by the Pigeon-Hole Principle there must be two distinct codewords which agree
in their first n− 2b coordinates. These two codewords can then be represented schematically as follows:

24

X =

n−2b︷ ︸︸ ︷
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

2b︷ ︸︸ ︷
A A A A A A

Y = ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ B B B B B B

where “∗” denotes agreement, and the A’s and B’s are arbitrary. But then the word

Z = ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ A A A B B B

differs from both X and Y by a burst of length ≤ b, a contradiction. ❐

Corollary (The Reiger Bound). If 0 ≤ b ≤ n/2, a binary (n, k) linear burst-b error-correcting code must
satisfy

r ≥ 2b

where r = n− k is the code’s redundancy.

Proof: The number of codewords in an (n, k) binary linear code is 2k, which by Theorem 8.10 must be
≤ 2n−2b. This is equivalent to the statement of the Corollary. ❐

We are now in a position to discuss a series of examples of burst error-correcting codes. In each case,
the code will be cyclic and meet either the strong Abramson or Reiger Bound (which apply all linear codes,
not just cyclic codes.) In this discussion, when we say that a particular bound (either the Abramson bound
or the Reiger bound) is tight, we mean that there exists a code whose redundancy is equal to the value of
the bound. If no such code exists, we will say that the bound is loose.

Example 8.13. The (n, 1) binary repetition code with g(x) = xn−1 + xn−2 + · · · + x + 1, where n is odd,
can correct all error patterns of weight ≤ (n− 1)/2, and so is a burst-(n− 1)/2 error correcting code. Since
r = n− 1, the Reiger Bound is tight. ❐

Example 8.14. The (n, n) code, consisting of all possible codewords of length n is a cyclic code with g(x) = 1.
It is (trivally) a b = 0 burst error-correcting code, and since r = 0 too, the Reiger bound is again tight. ❐

Example 8.15. Any binary Hamming code, with n = 2m − 1, r = m, and g(x)= a primitive polynomial of
degree m, is a b = 1 burst error correcting code. (Any error vector of weight 1 is ipso facto a burst of length
1.) The strong Abramson bound is tight for all these codes. ❐

Example 8.16.† Any cyclic Hamming code from which the codewords of odd weight have been removed is
a b = 2 burst error correcting code called an Abramson Code. These codes are cyclic codes with generator
polynomials of the form g(x) = (x + 1)p(x), where p(x) is a primitive polynomial. (See Problem 8.55). The
smallest Abramson code is the (7, 3) cyclic code with g(x) = (x + 1)(x3 + x + 1) and parity-check matrix

H =
(

1 α α2 α3 α4 α5 α6

1 1 1 1 1 1 1

)
,

where α is a primitive root satisfying the equation α3 + α + 1 = 0 in GF(8). To verify that this code is
indeed a b = 2 burst error connecting code, we need to check that the syndromes of all bursts of length b ≤ 2
are distinct. For b = 0 (the all zeros error pattern), the syndrome is

(
0
0

)
. For b = 1, a burst with description

(1, i) has syndrome
(
αi

1

)
. For b = 2, a burst with description (11, i) has syndrome

(
αi(α+1)

0

)
. These 1 + 2n

syndromes are all distinct, and so the code is indeed a b = 2 burst error correcting code. Note finally that
if g(x) = (x + 1)p(x), where p(x) is a primitive polynomial of degree m, then n = 2m − 1, r = m + 1, and
b = 2, so that the strong Abramson Bound is tight. (For m = 3, i.e. the (7, 3), b = 2 code, the Reiger Bound
is tight, too, but for all larger values of m the Reiger Bound is loose.) ❐

25

Example 8.17.† The (15, 9) binary cyclic code with generator polynomial g(x) = (x4 + x + 1)(x2 + x+ 1) =
x6 + x5 + x4 + x3 + 1 turns out to be a b = 3 burst error-correcting code, for which, therefore, both the
strong Abramson and Reiger bounds are tight. To prove that this is so, we use the parity-check matrix

H =
(

1 α α2 · · · α14

1 ω ω2 · · · ω14

)
,

where α is a primitive root in GF (16) satisfying α4 +α+1 = 0, and ω is an element of order three in GF (16)
satisfying ω2 + ω + 1 = 0, and check that the syndromes of all error bursts of length b ≤ 3 are distinct.

The all-zero pattern has syndrome
(
0
0

)
. For b = 1, a burst with description (1, i) has syndrome

(
αi

ωi

)
. For

b = 2, a burst with description (11, i) has syndrome
(αi(1+α)
ωi(1+ω)

)
=

(
αi+4

ωi+2

)
, since 1 + α = α4 and 1 + ω = ω2.

For b = 3, there are two possible patterns, viz. 101 and 111. A burst with description (101, i) has syndrome(αi(1+α2)
ωi(1+ω2)

)
=

(
αi+8

ωi+1

)
, since 1 + α2 = α8 and 1 + ω2 = ω, and a burst with description (111, i) has syndrome(αi(1+α+α2)

ωi(1+ω+ω2)

)
=

(
αi+10

0

)
, since 1+α+α2 = α10 and 1+ω+ω2 = 0. Plainly the all-zero pattern and the pattern

111 cannot be confused with anything else, because of the “0” in the second component of the syndrome.
To distinguish between the patterns 1, 11, and 101, we need to look a bit deeper. For any one of these three
patterns, the syndrome will be of the form

(
αs

ωt

)
; to distinguish between them, we look at (s − t) mod 3. If

the pattern is 1, then s = i, t = i, and (s − t) mod 3 = 0; if the pattern is 11, then s = i + 4, t = i + 2,
and (s− t) mod 3 = 2; and if the pattern is 101, then s = i + 8, t = i + 1, and (s− t) mod 3 = 1. Thus the
61 syndromes of the bursts of length ≤ 3 are distinct, and the following table summarizes the relationship
between syndromes and burst descriptions.

syndrome burst description(
0
0

)
∅(

αs

0

)
(111, s− 10 mod 15)(

αs

ωt

)
(1, s) if (s− t) mod 3 = 0

(101, s− 8 mod 15) if (s− t) mod 3 = 1

(11, s− 4 mod 15) if (s− t) mod 3 = 2.

For example, the syndrome
(
α11

1

)
has s = 11, t = 0, and so corresponds to the burst description (11, 7),

i.e., the error pattern is (0000000000011000). ❐

The mathematical details of Example 8.17 are somewhat intricate, and do not easily generalize. (But
see Problem 8.63). Nevertheless, researchers over the years have succeeded in finding a large number of cyclic
burst error correcting codes which meet the strong Abramson bound; these are usually called optimium burst
error-correcting codes. In Table 8.3, which follows, we list a number of such codes.

The next example illustrates the important interleaving technique, which is a simple way of boosting
the burst error connecting ability of a code. (See also Problem 7.32).

Example 8.18. Consider again the (7, 3) b = 2 Abramson code with g(x) = x4+x3+x2+1 (see Example 8.16).
Let A, B, and C be any three words from this code, which we can display as a 3× 7 array:

A0 A1 A2 A3 A4 A5 A6

B0 B1 B2 B3 B4 B5 B6

C0 C1 C2 C3 C4 C5 C6.

The following length 21 vector, which is built by reading the above array by columns, is called the interleaving
of A, B, and C:

A0 B0 C0 A1 B1 C1 A2 B2 C2 A3 B3 C3 A4 B4 C4 A5 B5 C5 A6 B6 C6 .

26

generator polynomial (n, k) b

(x3 + x + 1)(x + 1) (7, 3) 2

(x4 + x + 1)(x + 1) (15, 10) 2
(x4 + x + 1)(x2 + x + 1) (15, 9) 3

(x5 + x2 + 1)(x + 1) (31, 25) 2

(x6 + x + 1)(x + 1) (63, 56) 2
(x6 + x + 1)(x2 + x + 1) (63, 55) 3

(x7 + x + 1)(x + 1) (127, 119) 2

(x8 + x7 + x2 + x + 1)(x + 1) (255, 246) 2
(x8 + x7 + x2 + x + 1)(x2 + x + 1) (255, 245) 3

(x9 + x7 + x6 + x3 + x2 + x + 1)(x + 1) (511, 501) 2
(x9 + x7 + x6 + x3 + x2 + x + 1)(x3 + x + 1) (511, 499) 4

(x10 + x5 + x3 + x2 + 1)(x + 1) (1023, 1012) 2
(x10 + x5 + x3 + x2 + 1)(x2 + x + 1) (1023, 1011) 3
(x10 + x5 + x3 + x2 + 1)(x2 + x + 1)(x + 1) (1023, 1010) 4

(x11 + x + 1)(x + 1) (2047, 2035) 2

(x12 + x11 + x9 + x8 + x7 + x5 + x2 + x + 1)(x + 1) (4095, 4082) 2
(x12 + x11 + x9 + x8 + x7 + x5 + x2 + x + 1)(x2 + x + 1) (4095, 4081) 3
(x12 + x11 + x9 + x8 + x7 + x5 + x2 + x + 1)(x2 + x + 1)(x + 1) (4095, 4080) 4

(x15 + x13 + x10 + x9 + x5 + x3 + x2 + x + 1)(x3 + x + 1)(x + 1) (32767, 32748) 5

Table 8.3. Some cyclic burst-error correcting codes that meet
the strong Abramson bound, i.e., satisfy n = 2r−b+1 − 1.

Let us suppose that this long codeword is transmitted over a bursty channel and suffers a burst of length 6,
indicated by ∗’s:

A0 B0 C0 A1 B1 C1 A2 B2 C2 A3 ∗ ∗ ∗ ∗ ∗ ∗ B5 C5 A6 B6 C6 .

It is possible to correct this burst of errors, simply by “de-interleaving” this long codeword into its component
codewords, because after de-interleaving, no one of the three codewords will have suffered a burst larger than
two:

A0 A1 A2 A3 ∗ ∗ A6

B0 B1 B2 ∗ ∗ B5 B6

C0 C1 C2 ∗ ∗ C5 C6.

The code consisting of all possible interleavings of three codewords from the (7, 3) Abramson code is
called the depth-3 interleaving of the original code. It is a (21, 9) linear code; and the argument above shows
that it is in fact a b = 6 burst-error-correcting code. More generally, for any positive integer j, the depth-j
interleaving of the (7, 3) Abramson code is a (7j, 3j) b = 2j burst-error-correcting code. Note that each one
of these codes satisfies the Reiger bound with equality (since r = 4j and b = 2j), so that in a certain sense,
no loss of efficiency results when a code is interleaved. ❐

27

A straightforward generalization of the argument given in Example 8.18 leads to the following important
theorem.

Theorem 8.11. If C is an (n, k) linear burst-b error-correcting code, then the depth-j interleaving of C is a
(nj, kj) burst-bj error-correcting code.

It is not obvious, but it is nevertheless true, that if we interleave a cyclic code to depth j, the resulting
code is also cyclic. The next theorem spells this out.

Theorem 8.12. If C is an (n, k) cyclic code with generator polynomial g(x), then the depth-j interleaving
of C is an (nj, kj) cyclic code with generator polynomial g(xj).

Proof: To prove the theorem, we introduce the symbol “�” to denote the interleaving operation. Thus the
vector obtained by interleaving the j codewords C0,C1, . . . ,Cj−1 is denoted by C0 �C1 � · · · �Cj−1. An easy
lemma, whose proof we leave as Problem 8.65, shows how to compute the right cyclic shift of an interleaved
codeword:

[C0 �C1 � · · · �Cj−1]R = [CR
j−1 �C0 � · · · �Cj−2]. (8.10)

Equation (8.10) shows that the depth-j interleaving of a cyclic code is cyclic, since if C0,C1, . . . ,Cj−1 are
words from a fixed cyclic code, then so are CR

j−1,C0, . . . ,Cj−2. Since the redundancy of the interleaved code
is rj, its generator polynomial will be its unique monic polynomial of degree rj. But if g(x) is the generator
polynomial for the original code, then the interleaved codeword [g(x) � 0 � · · · � 0], which is the polynomial
g(xj), has degree rj, and so g(xj) must be the generator polynomial for the interleaved code. ❐

Example 8.19. Starting with the (7, 3) b = 2 Abramson code with generator polynomial g(x) = x4+x3+x2+1,
and using the interleaving technique, we can produce an infinite family of cyclic burst error correcting codes,
viz. the (7j, 3j) b = 2j codes, with generator polynomials gj(x) = x4j + x3j + x2j + 1. Similarly, starting
with the cyclic (15, 9) b = 3 code of Example 8.17, we obtain another infinite family, viz. the (15j, 9j) b = 3j
cyclic codes with generator polynomials gj(x) = x6j + x5j + x4j + x3j + 1. Note that every code in each of
the families meets the Reiger bound (Corollary to Theorem 8.11). ❐

Example 8.20. In the following table, we consider binary cyclic n = 15 burst error-correcting codes, for
b = 1, 2, . . . , 7.

b rA rR g(x) comment

1 4 2 x4 + x + 1 Hamming code
2 5 4 (x4 + x + 1)(x + 1) Abramson code (Example 8.16)
3 6 6 (x4 + x + 1)(x2 + x + 1) Example 8.17
4 7 8 (x4 + x + 1)(x4 + x3 + x2 + x + 1) Problem 8.52
5 8 10 (x4 + x + 1)(x2 + x + 1)(x4 + x3 + 1) (3, 1) interleaved ×5

= x10 + x5 + 1
6 9 12 (x4 + x + 1)(x4 + x3 + x2 + x + 1)(x4 + x3 + 1) Problem 8.54

= x12 + x9 + x6 + x3 + 1
7 10 14 x14 + x13 + · · ·+ x + 1 Repetition code

For each such value of b, we list the lower bounds on the needed redundancy using the (weak) Abramson
bound (rA) and the Reiger bound (rR). By chance, turns out that in every case there is a cyclic code whose
redundancy is max(rA, rR), and we have listed the generator polynomial g(x) for such a code in each case.
The cases b = 1, 2, 3 we have already considered; the case b = 4 we leave as Problem 8.58. To obtain the
b = 5 code, we interleave the (3, 1) repetition code with g(x) = x2 + x + 1 to depth 3, using Theorem 8.12.
The case b = 6 is left as Problem 8.60. Finally, the case b = 7 is simply the n = 15 repetition code. ❐

If we combine the codes found in Table 8.3 (or in more extensive tables which have been found by
elaborate algebraic or ad hoc computer methods) with the interleaving technique, we can produce many

28

good burst-error correcting cyclic codes, and indeed some of the burst-error correcting codes used in practice
have been constructed this way. However, there is another, quite different, general approach to designing
burst-error correcting codes which has had great success as well, called the Fire Code method, which we
shall now study.

Fire codes differ in a number of ways from the other cyclic burst-error correcting codes we have studied.
The most important difference is their guaranteed ability to detect many error bursts that are too long to
correct. Indeed, Fire codes are strong burst-error correcting codes in the sense of the following definition.

Definition. An (n, k) cyclic code with generator polynomial g(x) is said to be a strong burst-b error-
correcting code, if, whenever Z1 and Z2 are burst error vectors with the same syndrome, and with burst
descriptions (pattern1, location1) and (pattern2, location2) such that length(pattern1) + length(pattern2) ≤
2b, then Z1 = Z2. ❐

The following theorem shows that strong burst-error-correcting codes are capable of simultaneous burst
error correction and detection.

Theorem 8.13. If C is a strong burst-b error-correcting code, then for any pair of nonnegative integers b1
and b2 such that b1 ≤ b2 and b1 + b2 = 2b, it is possible to design a decoder for C that will correct all bursts
of length ≤ b1, while at the same time detecting all burst of length ≤ b2.

Proof: This follows from Theorem 7.4 and the definition of strong burst correction. To see this, let E
denote the set of error bursts of length ≤ b1, and let F denote the set of error bursts of length ≤ b2. Then if
Z1 ∈ E and Z2 ∈ F , we know that Z1 and Z2 have burst descriptions such that length(pattern1) ≤ b1 and
length(pattern2) ≤ b2. But b1 + b2 = 2b, and so by the definition of a strong burst-b error correcting code,
Z1 and Z2 have different syndromes. Thus by Theorem 7.4, C has the advertised capability. ❐

Example 8.21.† Most burst-b error-correcting codes, including all of the codes in Table 8.3, are not strong.
For example, consider the (7, 3) b = 2 Abramson code. Its parity-check matrix can be taken to be

H =
(

1 α α2 α3 α4 α5 α6

1 1 1 1 1 1 1

)
,

where α3 + α + 1 = 0 in GF(8), as we saw in Example 8.16. This code corrects all bursts of length ≤ 2;
but it cannot correct all bursts of length ≤ 1 while detecting all bursts of length ≤ 3, since e.g. the error
patterns (1110000) and (0000010) have the same syndrome, viz.

(
α5

1

)
. (See Problem 8.68). ❐

Example 8.22. As a degenerate example of a strong burst-b error correcting code, consider the (n, 0) “no
information” cyclic code with generator polynomial xn − 1. This code has only one codeword (the all zeros
codeword) and so it is not useful for transmitting information; nevertheless, all error patterns have distinct
syndromes, and so it is a strong burst-n error-correcting code. (This code will be used as a building block
for the Fire codes to be defined in the Corollary to Theorem 8.14, which follows.) Similarly, the (n, 1) binary
repetition code with g(x) = (xn + 1)/(x + 1) is a strong burst-b error correcting code with b = (n− 1)/2, if
n is odd. (See Problem 8.66). ❐

The following theorem gives a general construction for cyclic burst-b error correcting codes, both strong
and weak.

Theorem 8.14. (The Fire Construction). Suppose g1(x) is the generator polynomial for an (n1, k1) cyclic
code which is a (strong) burst-b1 error correcting code, g2(x) is the generator polynomial for an (n2, k2)
cyclic code, and all of g2(x)’s irreducible factors have degree ≥ m, and finally that g1(x) and g2(x) are
relatively prime. Then g(x) = g1(x)g2(x) is the generator polynomial for an (n, k) cyclic code which is a
(strong) burst-b error-correcting code, where:

n = lcm(n1, n2)
k = n− deg(g1)− deg(g2)
b = min(b1,m, (n1 + 1)/2).

29

Proof: By Theorem 8.3a, g1(x) |xn1−1 and g2(x) |xn2−1. Thus since both xn1−1 and xn2−1 divide xn−1,
where n = lcm(n1, n2), and since g1(x) and g2(x) are relatively prime, it follows that g(x) = g1(x)g2(x) |xn−
1, and so by Theorem 8.3 b, g(x) generates an (n, k) cyclic code, where k = n−deg(g) = n−deg(g1)−deg(g2).
This much is easy. The heart of the proof deals with the assertion about the burst-error correcting capability
of the code. We will assume that the code generated by g1(x) is strong, and show that the resulting longer
code is also strong. The proof for a “weak” g1(x) is left as a Problem 8.69.

Thus let Z1 and Z2 be two error vectors of length n with the same syndrome relative to the cyclic
code with generator polynomial g(x), and with burst descriptions (P1,i) and (P2,j) such that length(P1) +
length(P2) ≤ 2b. We need to show that Z1 = Z2.

Let’s denote the generating functions for the two burst patterns by P1(x) and P2(x). It follows that
the generating functions for the error vectors Z1 and Z2 are [xiP1(x)]n and [xjP2(x)]n, respectively, and so
the remainder syndromes are [xiP1(x)]n mod g(x) and [xjP2(x)]n mod g(x). But since g(x) |xn− 1, Lemma
1(v) implies that the two syndromes can in fact be written as

S1(x) = xiP1(x) mod g(x)
S2(x) = xjP2(x) mod g(x).

Since Z1 and Z2 are assumed to have the same syndrome, we therefore have

xiP1(x) ≡ xjP2(x) (mod g(x)). (8.11)

Since g(x) = g1(x)g2(x), then also

xiP1(x) ≡ xjP2(x) (mod g1(x)).

But length(P1) + length(P2) ≤ 2b by assumption, and 2b ≤ 2b1 by the definition of b. Thus since g1(x)
generates a strong burst-b1 error-correcting code, it follows that from the viewpoint of the cyclic code
generated by g1(x), the error vectors Z1 and Z2 are identical, i.e.

xiP1(x) ≡ xjP2(x) (mod xn1 − 1).

But length(P1) + length(P2) ≤ 2b ≤ n1 + 1, and so by Theorem 8.7,

P1 = P2 (8.12)
i ≡ j (mod n1). (8.13)

In view of this, (8.11) implies
(xi − xj)P1(x) ≡ 0 (mod g2(x)). (8.14)

But 2 · length(P1) ≤ 2b, and so P1(x) has degree ≤ b − 1, which is less than m, the degree of the smallest-
degree divisor of g2(x). Thus P1(x) and g2(x) are relatively prime, and so we can cancel P1(x) from (8.14),
obtaining

xi − xj ≡ 0 (mod g2(x)). (8.15)

But since the sequence xt mod g(x), has period n2, (8.15) implies i ≡ j (mod n2). Combining this fact
with (8.13), and using the fact that n = lcm(n1, n2), we have i ≡ j (mod n); but since i and j both lie in
the range 0, 1, . . . , n− 1, it follows that i = j. Since we already showed that P1 = P2, it follows that the
error vectors Z1 and Z2 are identical, and this completes the proof. ❐

Corollary (The classical Fire codes). Let g(x) = (x2b−1 − 1)f(x), where f(x) is an irreducible poly-
nomial which is not a divisor of x2b−1 − 1, of degree m ≥ b and period n0. Then g(x) is the generator
polynomial for an (n, n−2b+1−m) cyclic code which is a strong burst-b corrector, where n = lcm(2b−1, n0).
This code is called a Fire code, in honor of Philip Fire, its discoverer.

Proof: This follows immediately from Theorem 8.14, by taking g1(x) = (x2b−1 − 1) and g2(x) = f(x) (In
Example 8.22 we saw that the g1(x) code is a strong burst-b corrector). ❐

30

Example 8.23. According to the Corollary to Theorem 8.14, the binary cyclic code with g(x) = (x3 +1)(x3 +
x+1) = x6 +x4 +x+1 generates a (21, 15) strong b = 2 burst error correcting Fire code. Thus it is possible
to devise a decoder for this code that corrects all bursts of length ≤ 2; or to correct all bursts of length ≤ 1
and detect all bursts of length ≤ 3; or to detect all bursts of length ≤ 4. Note that this code meets neither
the strong Abramson bound nor the Reiger bound; on the other hand, codes that do meet these bounds are
apparently never strong burst correctors. Also note that if we take g1(x) = x4 +x3 +x2 +1, which generates
the (weak) (7, 3) b = 2 Abramson code, and g2(x) = x2 +x+1, Theorem 8.14 implies that g(x) = g1(x)g2(x)
generates a (weak) (21, 15) b = 2 burst error correcting code. But g1(x)g2(x) = x6 +x4 +x+1, and we have
already seen that this polynomial is strong! ❐

Example 8.24. The polynomial P35(x) = x35 + x23 + x8 + x2 + 1 is a primitive binary polynomial of degree
35, and so by the Corollary to Theorem 8.14, g(x) = (x13 + 1)P35(x) = x48 + x36 + x35 + x23 + x21 + x15 +
x13 + x8 + x2 + 1 generates a strong cyclic (13(235 − 1), 13(235 − 1) − 48) = (446676598771, 446676598723)
b = 7 Fire code. This particular Fire code is quite famous, because IBM has used a “shortened” version of it
in many of its disk drives. What is a shortened cyclic code? In general, if g(x) has degree r and generates a
(n, n−r) cyclic code, then for any n0 ≤ n, g(x) also generates a (n0, n0−r) shortened cyclic code. This code
consists of all vectors C of length n0 whose generating function C(x) is a multiple of g(x). In the case of the
IBM Fire code, n0 = 152552, so the code used is actually a (152552, 152504) shortened cyclic b = 7 strong
burst error correcting code. The IBM decoder is very conservative and only attempts to correct bursts of
length ≤ 4, and so, since the code is strong, it thereby gains the ability to detect all bursts of length ≤ 10.
In fact, however, because the code has been so drastically shortened, a computer-aided calculation shows
that the IBM decoder will actually detect all burst error patterns of length ≤ 26, and all but an infinitesmal
fraction of longer bursts. ❐

We conclude this section with a short table listing some useful binary Fire codes. For each of these
codes, g(x) = (x2b−1 + 1)pb(x), where pb(x) is a primitive polynomial of degree b. The redundancy is
thus r = 3b − 1, although the redundancy required by the weak Abramson and Reiger bounds is typically
considerably smaller than this. This “extra” redundancy is apparently the price that must be paid in order
that the codes be strong burst correctors.

(n, k) b generator polynomial

(35, 27) 3 (x5 + 1)(x3 + x + 1) = x8 + x6 + x5 + x3 + x + 1
(105, 94) 4 (x7 + 1)(x4 + x + 1) = x11 + x8 + x7 + x4 + x + 1

(279, 265) 5 (x9 + 1)(x5 + x2 + 1) = x14 + x11 + x9 + x5 + x2 + 1
(693, 676) 6 (x11 + 1)(x6 + x + 1) = x17 + x12 + x11 + x6 + x + 1

(1651, 1631) 7 (x13 + 1)(x7 + x + 1) = x20 + x14 + x13 + x7 + x + 1
(255, 232) 8 (x15 + 1)(x8 + x4 + x3 + x2 + 1) = x23 + x19 + x18 + x17 + x15

+x8 + x4 + x3 + x2 + 1
(8687, 8661) 9 (x17 + 1)(x9 + x4 + 1) = x26 + x21 + x17 + x9 + x4 + 1

(19437, 19408) 10 (x19 + 1)(x10 + x3 + 1) = x29 + x22 + x19 + x10 + x3 + 1

Table 8.4. Some Fire Codes.

31

8.5 Decoding Burst Error Correcting Cyclic Codes
In Section 8.2 we saw how to design a shift-register encoder for an arbitrary cyclic code. As a rule it is much
harder to design a corresponding decoder, but in the important special case of burst error correcting cyclic
codes, there is a simple decoding algorithm called the burst-trapping algorithm which naturally lends itself
to shift-register implementation. In this section we will see how burst-trapping works.

Here is the underlying idea. Suppose that g(x) generates an (n, k) cyclic code C , and that a transmitted
codeword C(x) is received as R(x), where

R(x) = C(x) + E(x),

E(x) being the error pattern. If the decoder computes the remainder syndrome S(x) defined by

S(x) = R(x) mod g(x),

then the vector obtained by subtracting S(x) from R(x), viz.

Ĉ(x) = R(x)− S(x), (8.16)

is guaranteed to be a codeword. This is because Ĉ(x) mod g(x) = R(x) mod g(x)−S(x) mod g(x) = 0. Thus
if C can correct all errors in the set E , and S(x) lies in E , then the decoder can safely assert that Ĉ(x) is the
actual transmitted codeword, since no other codeword can differ from R(x) by an error pattern in E . This
much is true for any cyclic code. Let’s now consider the special case of a cyclic burst error correcting code.

Suppose then that C is a burst-b error correcting code, and that the syndrome S(x) satisfies the two
conditions

S(0) �= 0
deg(S(x)) ≤ b− 1.

(8.17)

What this means is that the syndrome itself is a (left-justified) burst of length ≤ b, and so by the above
discussion the decoder can safely assert that Ĉ(x), as defined in (8.16), is the actual transmitted codeword.
Decoding is therefore easy if (8.17) is satisfied. Unfortunately, however, this only happens if the error vector
is a burst located at position 0.

Suprisingly, however, this simple idea can be made to work even if the burst is located in a position
other than 0, by taking advantage of the “cyclicness” of the code. Here’s how: if the error vector E(x) is a
nonzero burst of length ≤ b, then E(x) has a unique burst description of the form (P (x), i0) with P (0) �= 0
and deg(P) ≤ b− 1. Then E(x) = [xi0P (x)]n and the remainder syndrome is

S(x) = [xi0P (x)] mod g(x),

where g(x) is the code’s generator polynomial. This situation is depicted in Figure 8.9a. As we already
noted, if the burst is located in position 0, i.e., if i0 = 0, then S(x) = P (x) and the error burst can be
corrected immediately. If i0 �= 0, however, it is possible to shift E(x) cyclically to the right until the burst
pattern P (x) is located, or “trapped”, in position 0 as shown in Figure 8.9b. The number of cyclic shifts
required to do this is the unique integer j0 in the range 0 ≤ j0 ≤ n− 1 such that i0 + j0 ≡ 0(modn), which
is

j0 = (−i0) mod n.

If now Rj0(x) denotes the j0th cyclic shift of R(x), we have

Rj0(x) = Cj0(x) + Ej0(x),

where Cj0(x) and Ej0(x) are the j0th cyclic shifts of C(x) and E(x), respectively. Now Cj0(x) is a codeword
since the code is cyclic, and Ej0(x) = P (x) by the definition of j0, and so if Sj0(x) denotes the remainder
syndrome of Rj0(x), we have

Sj0(x) = Rj0(x) mod g(x)
= (Cj0(x) + Ej0(x)) mod g(x)
= P (x).

32

1XXXX

io

P

E(x) :

1XXXX

P

0

(a)

(b)

j o
E (x) : S jo

(x) = P(x).

S(x)=[xioP(x)] n mod g(x).

Figure 8.9. (a). The burst error vector E(x) = [xi0P (x)]n.
(b) After shifting E(x) j0 units to the right, where
j0 = (n − i0) mod n, the error pattern is “trapped”

at location 0, where the corresponding syndrome
is P (x), a left-justified burst of length ≤ b − 1.

This means that Sj0(x) satisfies the conditions (8.17), and so the decoder can safely assert that Ĉj0(x),
defined by

Ĉj0(x) = Rj0(x)− Sj0(x)

is the j0 th cyclic shift of the actual transmitted codeword.
It follows that if the decoder successively computes S0(x), S1(x), . . ., and tests each of these polynomials

for the conditions (8.17), eventually the burst error will be “trapped,” and it can be corrected. Indeed,
the burst error pattern will be given by Sj0(x), and the burst error location will be given by the formula
i0 = (−j0) mod n, where j0 is the number of shifts required to trap the error. At this point, we could design
a fairly simple decoder using these ideas. However, before doing so, we wish to note that the calculation of
the successive Sj(x)’s can be considerably simplified by using the following result.

Theorem 8.15. (Meggitt’s Lemma).: For j ≥ 0 define

Sj(x) = [xjR(x)]n mod g(x),

i.e., Sj(x) is the remainder syndrome of the jth cyclic shift of R(x). Then for j ≥ 0,

Sj+1(x) = [xSj(x)] mod g(x)

Proof: First note that by Lemma 1(v),

Sj(x) = [xjR(x)] mod g(x),

since g(x) |xn − 1. Then

[xSj(x)] mod g(x) = [x([xjR(x)] mod g(x))] mod g(x)
= [xj+1R(x)] mod g(x) by Lemma 1(iv)
= Sj+1(x).

33

❐

Example 8.25. We illustrate these ideas using the (7, 3) b = 2 Abramson code with g(x) = x4 + x3 + x2 + 1.
Suppose the received vector is R = [1010011], i.e., R(x) = x6 +x5 +x2 + 1. Then S0(x) = R(x) mod g(x) =
(x6 + x5 + x2 + 1) mod (x4 + x3 + x2 + 1) = x3 + x2. Using Meggitt’s Lemma, we successively complete
S1(x), S2(x), etc.:

S1(x) = [xS0(x)] mod g(x)
= (x4 + x3) mod (x4 + x3 + x2 + 1)
= x2 + 1.

Similarly,

S2(x) = x3 + x

S3(x) = (x4 + x2) mod g(x) = x3 + 1
S4(x) = (x4 + x) mod g(x) = x3 + x2 + x + 1
S5(x) = (x4 + x3 + x2 + x) mod g(x) = x + 1.

Now we stop, since S5(x) satisfies the conditions (8.17), and conclude that the burst error pattern is 11,
and the burst error location is (−5) mod 7 = 2. Thus the error vector is E = [0011000], and the corrected
codeword is R + E = [1001011]. ❐

In Figure 8.10 we display a complete decoding algorithm for a burst-b error-correcting cyclic code, includ-
ing the simplification afforded by Meggitt’s Lemma. In this algorithm, the syndrome S0(x) is first computed
at line 3. The for loop at lines 4-8 successively tests the shifted syndrome S0(x), S1(x), . . . , Sn−1(x) for the
condition (8.17). If this condition is satisfied, the burst of errors is corrected at line 6. Then the next cyclic
shift Rj+1(x) of the received word is completed at line 7, and the next syndrome Sj+1(x) is computed (using
Meggitt’s lemma) at line 8. After n cyclic shifts, the original received sector, minus the burst error pattern,
is output at line 9. (The algorithm also works if there are no errors; see Problem 8.75).

/* Burst Error Trapping Decoding Algorithm */

{
1. input R(x);
2. R0(x)← R(x);
3. S0(x)← R0(x) mod g(x);
4. for(j = 0 to n− 1) {
5. if (Sj(0) �= 0 and degSj(x) ≤ b− 1)
6. Rj(x)← Rj(x)− Sj(x);
7. Rj+1(x)← [xRj(x)] mod xn − 1;
8. Sj+1(x)← [xSj(x)] mod g(x);

}
9. output Rn(x);
}

Figure 8.10 “Full-Cycle-Clock-Around” Burst Trapping
Decoding Algorithm for Cyclic Burst Error Correction.

The algorithm described in Figure 8.10 lends itself to implementation by shift-register logic. We illustrate
this in Figures 8.11 and 8.12, for two different burst-error correcting cyclic codes, the (7, 3) b = 2 Abramsom
code of Example (8.16) and the (15, 9) b = 3 code of Example 8.17.

34

A

First 7 ticks: closed
next 7 ticks: open B

mod x +17

register

4mod x + x3+x2+ 1
register

first 7 ticks: open

next 7 ticks: closed

mod g(x) register

1000 recognizer

next 15 ticks:

first 15 ticks:closed

open openfirst 15 ticks:

next 15 ticks: closed

A

B mod xn _1 S.R.

Figure 8.11. Complete decoding of circuit for the (7, 3)
b = 2 Abramson code with g(x) = x4 + x3 + x2 + 1 (see
Example 8.16). After 14 ticks, the decoding is complete,

and the decoded word appears in the lower register.

Figure 8.12. Simplified diagram for a complete decoding circuit
for the (15, 9) b = 3 cyclic code with g(x) = x6 + x5 + x4 + x3 + 1

(see Example 8.17). After after 30 ticks, the decoding is
complete, and the decoded word appears in the lower register.

In the decoding circuits in Figures 8.11 and 8.12, there are three main components: a mod g(x) shift
register, a mod xn − 1 shift register, and a “100 · · · 0 recognizer” circuit correcting the two shift registers.
Initially, each flip-flop contains 0, switch A is in the closed position, and switch B is in the open position.
The symbols of the received vector are then clocked in from the left in the order Rn−1, Rn−2, . . . , R0. After
n ticks, the upper shift register will contain S0(x) = R(x) mod g(x) (by Theorem 8.4) and the lower shift
will contain R(x). Next, switch A is opened, and switch B is closed, thus allowing the upper shift register

35

to communicate to the lower shift register via the 100 · · · 0 recognizer, and the decoder operates for n more
ticks. We call these n ticks the decoding cycle. After the jth tick of the decoding cycle, the upper shift
register will contain [xjS0(x)] mod g(x) = Sj(x), and the lower register will contain [xjR(x)]n = Rj(x).
If conditions (8.17) are satisfied, then the leftmost flip-flop of the upper register will contain a 1, and the
rightmost r − b flip-flop will all contain 0’s. This will cause the 100 · · · 0 recognizer to output a 1, and the
trapped error pattern Sj(x) will then be added into Rj(x) at the next tick. After the n ticks of the decoding
cycle have been completed, the symbols in R(x) will have made a complete circuit around the mod(xn − 1)
register, and he returned to their original position, with the error burst corrected.

In general, circuits like these in Figures 8.11 and 8.12 are called “full-period clock-around” decoders.
They require exactly 2n clock ticks to correct any burst of length ≤ b, with hardware complexity that is
O(n). They are in widespread use in practice. However, for drastically shortened cyclic burst error correcting
codes, (e.g. Example 8.24), a modification of this circuit may be required–see Problem 8.77.

8.6. Problems for Chapter 8.

8.1. Show that the number of k-dimensional subspaces of an n-dimensional vector space over the field
GF (q) is exactly

(qn − 1)(qn−1 − 1) · · · (qn−k+1 − 1)
(qk − 1)(qk−1 − 1) · · · (q − 1)

,

and use this formula to verify that there are exactly 11811 binary (7, 3) linear codes.

8.2. Calculate the following:
(a) 1010 mod 12
(b) x1010

mod (x12 − 1)
(c) (x15 − 1) mod x10 − 1.

8.3. Is the “mod” operation associative and/or commutative? That is, are the identities

(P mod Q) mod R = P mod (Q mod R)
P mod Q = QmodP

true in general?

8.4. Show that if m ∈ {0, 1, . . . , n− 1}, then (j + m) mod n = i if and only if m = (i− j) mod n.

8.5. (a) Prove Lemma 1, part (i).
(b) Prove Lemma 1, part (ii).
(c) Prove Lemma 1, part (iii).
(d) Prove Lemma 1, part (iv).
(e) Prove Lemma 1, part (v).

8.6. Give a formal proof that if C is a cyclic code, and if C(x) ∈ C, then for all i ≥ 1, xiC(x) mod xn−1 ∈ C.
Hint: Use Lemma 1(iv).]

8.7. Find the G1 and H1 matrices for the (8, 4) cyclic code over GF (3) with generator polynomial
g(x) = (x2 + 1)(x2 + x + 1). (See Corollary 1 to Theorem 8.3.)

8.8. Find the G2 and H2 matrices for the (8, 4) cyclic code over GF (3) with generator polynomial
g(x) = (x2 − 1)(x2 + x + 1). (See Corollary 2 to Theorem 8.3.)

8.9. (a) Show that the following matrices are generator and parity-check matrices for an (n, k) cyclic code
with parity-check polynomial h(x), (and “reversed” parity-check polynomial h̃(x)):

G3 = [xj h̃(x)]n−1
j=0 (columns)

H3 = [xi+k − xi+kh̃(x)]r−1
i=0 (rows.)

36

(b) Use this result to find generator and parity-check matrices for the (7, 3) cyclic code with g(x) =
x4 + x3 + x2 + 1.

8.10. This problem concerns the matrix H1 of Corollary 1 to Theorem 8.3.
(a) If the syndrome S of the vector R = (R0, R1, . . . , Rn−1) is calculated as ST = H1RT , show that the

generating functions R(x) = R0 + R1x + · · · + Rn−1x
n−1 and S(x) = S0 + S1x + · · · + Sr−1x

r−1 are
related by

S(x) =
[R(x)h(x)] mod xn − [R(x)h(x)] mod xk

xk
,

(which is a just clumsy way of saying that (S0, S1, . . . , Sr−1) are the coefficients of xk, xk+1, . . . , xn−1

in the product R(x)h(x).)
(b) Using the result of part (a) find the syndrome of the vector R = [1001011] with respect to the “H1”

matrix for the cyclic code with g(x) = x4 + x3 + x2 + 1. (Cf. Example 8.7).

8.11. Show that the dual code of a cyclic code is also a cyclic code. If an (n, k) cyclic code has generator
polynomial g(x), and parity-check polynomial h(x), what are the generator and parity-check polynomials of
the dual code? [Hint: Refer to Corollary 1 of Theorem 8.3.] Illustrate your results by finding the generator
and parity-check polynomials for the dual code for the cyclic code of Examples 8.2 and 8.4.

8.12. Write each of the 9 codewords in the (4, 2) cyclic code of Example 8.3 as a multiple of the generator
polynomial g(x) = x2 + 2.

8.13. This problem asks you to count the number of binary block codes codes of length 7 with 16 codewords,
with various restrictions.
(a) How many such codes, total, are there?
(b) How many such linear codes?
(c) How many such linear codes, with dmin = 3?
(d) How many such cyclic codes?
(e) How many such cyclic codes, with dmin = 3?

8.14. Consider the (7, 4) cyclic Hamming code with g(x) = x3 + x + 1, as used to correct erasures. Since
its minimum distance is 3, we know that it will correct all patterns of 2 or fewer erasures. However, it will
also correct some patterns of three erasures. For example, the codeword g(x) = [1101000] with erasures in
positions 1, 3, and 6 is R = [1 ∗ 0 ∗ 00∗]. This pattern of three erasures is correctable, because of the 16
codewords in the code, only [1101000] agrees with R in the unerased positions. However, not all patterns of
three erasures are correctable: e.g., [∗ ∗ 0 ∗ 000] could be either [1101000] or [0000000]. Here is the problem:
of the

(
7
3

)
= 35 possible patterns of three erasures, how many are correctable, and how many are not?

8.15. How many binary cyclic codes of length n are there, for 1 ≤ n ≤ 20? How many of these are
improper?

8.16. How many binary cyclic codes of length 63 are there? How many are improper?

8.17. For which values of n in the range 3 ≤ n ≤ 20 are there exactly 4 cyclic codes of length n over F2?

8.18. What fraction of linear codes of length 4 over F2 are cyclic?

8.19. Find a formula for the number of cyclic codes of length 2m over F2.

8.20. Over the field GF (3), the polynomial x8 − 1 factors as x8 − 1 = (x + 1)(x + 2)(x2 + 1)(x2 + x +
1)(x2 + 2x+ 1). For each k in the range 0 ≤ k ≤ 8, determine the number of (8, k) cyclic codes over GF (3).

8.21. In Example 8.8, we saw that for the (4, 2) cyclic code over F3 with g(x) = x2− 1, the generator and
parity-check matrices of Corollaries 1 and 2 of Theorem 8.3 are equal, i.e., G1 = G2 and H1 = H2. Can you
find a general class of cyclic codes for which this property holds?

37

8.22. Suppose that over a given field F , the polynomial xn − 1 factors as

xn − 1 = P1(x)e1P2(x)e2 · · ·PM (x)eM ,

where the Pi(x)’s are distinct irreducible polynomials. In terms of e1, e2, . . . , eM , how many cyclic codes of
length n over F are there?

8.23. Explain each of the “comments” in the table in Example 8.9.

8.24. Prove that over the field F2, x3 + x + 1 | x7m − 1, for all m ≥ 1.

8.25. There are eight fourth-degree binary polynomials of the form g(x) = x4 + g3x
3 + g2x

2 + g1x+1. For
each of these polynomials answer the following:
(a) What is the period of g(x)?
(b) If n is the period you found in part (a), What is the k and d for the corresponding cyclic code?

8.26. (K. Sivarajan) Show that a binary cyclic code is a capable of correcting a single error, i.e., dmin ≥ 3,
if and only if it is a proper cyclic code.

8.27. At the end of Section 8.1, we discussed briefly improper cyclic codes, i.e., those for which the
period of the generator polynomial g(x) is less than n. In this problem, we will investigate cyclic codes
for which the parity-check polynomial has period less than n. Thus let C be an (n, k) cyclic code, and let
xn − 1 = g(x)h(x), where g(x) is the generator polynomial and h(x) is the parity-check polynomial, for C.
Suppose further that the period of h(x) is n0 < n, and that C0 is the (n0, k) cyclic code with generator
polynomial g(x) = (xn0 − 1)/h(x).
(a) What is the parity-check polynomial for C0?
(b) If d0 is the minimum distance of C0, what is the minimum distance of C?
(c) Show that C = (n/n0)C0, where “jC0” denotes the code of length n obtained from C0 by repeating

each codeword j times.

8.28. For each j in the range 1 ≤ j ≤ 16, find the length, dimension, and minimum distance of the (proper)
binary cyclic code with generator polynomial (x + 1)j . (Hint: The result of the previous problem will be
helpful.)

8.29. If g(x) has period n and degree r, then for any m ≥ 1, g(x) | xmn − 1 and so by Theorem 8.3b, g(x)
generates an (nm, nm− r) cyclic code. (For m ≥ 2, this code is improper.)
(a) Show that a vector C = [C0, C1, . . . , Cnm−1] is in this code if and only if

∑nm−1
i=0 Cix

i mod n ≡ 0
(mod g(x)).

(b) Show that the condition in part (a) is equivalent to saying that

[C0, C1, . . . , Cn−1] + [Cn, Cn+1, . . . , C2n−1] + · · ·+ [C(m−1)n, C(m−1)n+1, . . . , Cmn−1]

is in the (n, n− r) proper cyclic code generated by g(x).
(c) How many words of weight 2 are in this code?

8.30. In Figure 8.3 we see a “mod g(x)” circuit for a monic polynomial g(x). Explain how to modify this
circuit for a non-monic polynomial g(x) = g0 + g1x + · · ·+ grx

r, with gr �= 0, 1.

8.31. (a) Show that for the circuit of Figure 8.4(a), the relationship between the present state polynomial
S(x) and the next state polynomial S′(x) is

S′(x) = (xS(x) + sxr) mod g(x),

where s is the input signal.

38

(b) Use the result of part (a) to show that if the circuit of Figure 8.4(a) is initialized with s0 = s1 = · · · =
sr−1 = 0, and then given the input sequence a0, a1, . . . , then after the tth tick the state polynomial
will be

St(x) =
t∑

j=0

ajx
r+t−j mod g(x).

8.32. Consider the polynomial g(x) = x3 + 2x2 + 2 over the three-element field GF (3).
(a) What is the period of this polynomial?
(b) If n denotes the period you found in part(a), find a parity-check matrix for the cyclic code of length n

generated by g(x).
(c) Does this code have any words of weight 2? If not, explain why not. If so, explicitly list all such words.
(d) Draw a systematic shift-register encoder for this code.

8.33. Design three different shift-register encoders for the (15, 7) binary cyclic code with g(x) = x8 + x7 +
x6 + x4 + 1.

8.34. This problem concerns the (31, 26) cyclic Hamming code with g(x) = x5 + x2 + 1.
(a) Find a systematic (i.e., of the form [A|I5]) parity-check matrix for this code.
(b) Design a decoding circuit for this code.
(c) Use your decoder from part (b) to decode the received word

R = [1111111111110000000000000000000].

8.35. Find a formula for the number of words of weight 3 in the (2m − 1, 2m −m − 1) cyclic Hamming
code defined by the parity-check matrix (8.9).

8.36. Let g(x) be a polynomial of degree r over a finite field with q elements, such that g(0) �= 0.
(a) Show that the period of g(x) is ≤ qr − 1.
(b) Show that if the period of g(x) is qr − 1, then g(x) is necessarily irreducible. [Note: An ireducible

polynomial of degree r and period qr − 1 is called a primitive polynomial.]

8.37. Consider the (15, 11) binary cyclic Hamming code with generator polynomial g(x) = x4 + x + 1.
(a) Write out a 4× 15 binary parity-check matrix.
(b) Write out a 1× 15 F16 parity-check matrix.

8.38. Prove that if α is a primitive root in the field GF (2m) with minimal polynomial g(x), and if the
expansion of the power αj is

αj =
m−1∑
i=0

hi,jα
i for j = 0, 1, . . . , n− 1,

then the m× 2m− 1 matrix H = (hi,j) for i = 0, 1, . . . ,m− 1, j = 0, 1, . . . , 2m− 2 is the parity-check matrix
for a cyclic Hamming code with polynomial g(x).

8.39. Let g(x) be a binary primitive polynomial of degree m, and let H be a m × 2m − 1 binary matrix
which is a parity-check matrix for a (2m−1, 2m−m−1) Hamming code. How many of the (2m−1)! possible
permutations of the columns of H yield a parity-check matrix for the cyclic Hamming code with g(x) as the
generator polynomial?

8.40. In Table 8.3, except for the m = 1 entry, there are no polynomials of even weight. Explain why this
is so, i.e., why no polynomial of even weight can ever be primitive.

39

8.41. (Dual codes to cyclic Hamming codes—also called cyclic simplex codes, or maximal-length shift
register codes). Let Ck be an (n, k) (proper) cyclic code whose parity check polynomial h(x) is a primitive
polynomial of degree k, and let G1 be the generator matrix for Ck described in Corollary 1 to Theorem 8.3.
(a) Show that n = 2k − 1.
(b) Describe an efficient shift-register encoder for Ck.
(c) Show that the set of nonzero codewords of C is exactly equal to the set of cyclic shifts of the first row

of G1. Illustrate this result for C4 using the primitive polynomial x4 + x + 1 from Table 8.3.
(d) Find the weight enumerator for Ck.

8.42. Find a formula for the number of ordinary (i.e., not cyclic) bursts of length b, over a two-letter
alphabet (cf. Theorem 8.8.), for 1 ≤ b ≤ n.

8.43. Generalize Theorem 8.8 to a q-letter alphabet.

8.44. Extend Theorem 8.8 to cover the case b > (n + 1)/2.

8.45. Generalize Theorem 8.9 and its Corollaries to a q-letter alphabet.

8.46. Generalize Theorem 8.10 and its Corollary to cover the case of a q-letter alphabet.

8.47. Why is the case b = 0 not covered in Theorem 8.9?

8.48. Why do you suppose the two versions of the Abramson bound are called “strong” and “weak”?

8.49. Are the Abramson bounds (Corollary to Theorem 8.9) ever tight for the binary repetition codes?

8.50. Is the Reiger bound ever tight for the Abramson codes?

8.51. In some burst-error-correcting applications, it is sufficient to correct bursts that occur only in certain
special locations. The most important example of this is what is called phased burst error correction. In
phased burst error correction, the block length n is a multiple of b, and bursts of length b may occur only
at locations which are multiples of b. A code capable of correcting all phased bursts of length b is called a
phased burst-b error correcting code. For example, a phased burst-3 error-correcting code of length 12 must
be able to correct any burst of length 3 which occurs at locations 0, 3, 6, or 9.
(a) Show that Theorem 8.10, and hence the Reiger bound, applies to phased burst error-correcting codes.
(b) Show that if a code is capable of correcting t phased bursts of length b, then r ≥ 2tb.

8.52. Consider a (20, 12) binary linear code in which the parity-checks are described by the following array:




C0 C4 C8 C12 C16

C17 C1 C5 C9 C13

C14 C18 C2 C6 C10

C11 C15 C19 C3 C7




In a given codeword [C0, C1, . . . , C19], the components occupying the upper left 3 × 4 portion of the array
carry the information, and the components forming the right column and bottom row of the array are parity
positions. The parity check rules are that the sum of the components in each row and column of the array
is zero. Thus for example, C0 + C4 + C8 + C12 + C16 = 0 (first row sum), and C4 + C1 + C18 + C15 = 0
(second column sum).
(a) Show that this code can correct all phased bursts of length 4.
(b) Show that the corresponding 3× 4 array code is not capable of correcting all phased burst of length 3.
(c) Generalize, and show that a b× (b+1) array code can correct all phased bursts of length b, if and only

if b + 1 is a prime number.

40

8.53. (Burton codes.)
(a) Let g(x) = (xb − 1)pb(x), where pb(x) is an irreducible polynomial of degree b and period n1. Show

that g(x) generates an (n, n − 2b) cyclic code with n = lcm(n1, b) which is capable of correcting all
b-phased bursts of length b. (See previous problem.)

(b) Consider the sequence of (nj, (n−2b)j) cyclic codes obtained by interleaving the codes in part (a), and
let bj denote the corresponding (ordinary, i.e., unphased) burst error-correcting capability. Show that
limj→∞

bj
2bj = 1

2 , so that these code asymptotically meet the Reiger bound.

8.54. Consider a binary cyclic b = 3 burst error correcting code of length 31.
(a) Use the Abramson and the Reiger bounds to estimate the minimum needed redundancy.
(b) Do you think there is such a code with the redundancy predicted in part (a)? Explain fully.

8.55. Show that if g(x) is the generator polynomial for a an (n, k) cyclic code, and if (x + 1) is not a
divisor of g(x), then g′(x) = (x+ 1)g(x) is the generator polynomial for an (n, k− 1) code, which equals the
original code minus its words of odd weight.

8.56. Decode the following noisy codewords from the (7, 3) Abramson code of Example 8.16:
(a) [0101010]
(b) [1111111]
(c) [1110010]
(d) [1101000]
(e) [1011111]

8.57. Decode the following noisy codewords from the (15, 9) b = 3 burst error-correcting code of Exam-
ple 8.17:
(a) [000001001111000]
(b) [101110001100000]
(c) [111001000001111]
(d) [110100000101010]
(e) [111100000000000]

8.58. Verify the assertion, made in Example 8.20, that the polynomial g(x) = (x4+x+1)(x4+x3+x2+x+1)
generates a (15, 7) b = 4 burst error correcting cyclic code.

8.59. Do either of the following two polynomials generate a (15, 7) b = 4 burst error correcting cyclic code?
(a) g(x) = (x4 + x3 + 1)(x4 + x3 + x2 + x + 1)
(b) g(x) = (x4 + x + 1)(x4 + x3 + 1).

8.60. Verify the assertion, made in Example 8.20, that the polynomial g(x) = x12 + x9 + x6 + x3 + 1
generates a (15, 3) b = 6 burst error correcting cyclic code.

8.61. In the (15, 9) code of Example 8.17, 61 of the 64 cosets are accounted for by the bursts of length
≤ 3. Describe the syndromes of the missing three cosets. What is the length of the shortest burst pattern
in each of these cosets?

8.62. In Example 8.17, we saw that g(x) = (x4 + x + 1)(x2 + x + 1) generates a (15, 9) b = 3 burst
error-correcting cyclic code. Does g′(x) = (x4 + x3 + 1)(x2 + x + 1) work as well? How about g′′(x) =
(x4 + x3 + x2 + x + 1)(x2 + x + 1)?

8.63. Generalize Example 8.17 by showing that the (2m−1, 2m−m−3) binary cyclic code with generator
polynomial g(x) = p(x)(x2 + x + 1), where p(x) is a primitive polynomial of degree m such that 1 + x ≡ xa

(mod p(x)), where a mod 3 �= 2, is a b = 3 burst error correcting code that meets the Abramson bound.

41

8.64. If the code C meets the Abramson bound, will the depth-j interleaving of C also meet the Abramson
bound? If so, give a proof. If not, give a counterexample.

8.65. Prove the result (8.10) about the right cyclic shift of an interleaved vector.

8.66. Prove that the (n, 1) binary repetition code with g(x) = (xn + 1)/(x + 1) is a strong burst-b error
correcting code with b = (n− 1)/2, if n is odd.

8.67. Give a formal proof of Theorem 8.11.

8.68. (See Examples 8.11 and 8.21.) For the (7, 3) Abramsom code, show that every burst with pattern
111 has the same syndrome as some burst with pattern 1.

8.69. Prove Theorem 8.14 in the case that the code generated by g1(x) is a weak (i.e. not strong) burst-b
error-correcting code.

8.70. As mentioned in Example 8.24, if g(x) is a polynomial of degree r and period n, and if n0 < n, the
(n0, n0 − r) shortened cyclic code with generator polynomial g(x) consists of all vectors [C0, C1, . . . , Cn0−1]
whose generating function C0 + C1x + · · ·+ Cn0−1x

n0−1 is a multiple of g(x).
(a) Show that this is a linear code.
(b) If g(x) = x6 + x4 + x + 1 (see Example 8.23), find generator and parity-check matrices for the (16, 10)

shortened cyclic code generated by g(x).

8.71. Why is there no entry for b = 2 in Table 8.4?

8.72. For each of the n’s and b’s in Table 8.4, estimate the redundancy needed, using the Abramson and
Reiger bounds, and compare this value to the actual redundancy of the given Fire code.

8.73. Consider the (35, 27) b = 3 Fire code from Table 8.4. Decode the following received words, using a
“b1 = 3, b2 = 3” decoder (see Theorem 8.13)

R1 = [11010110111010110111010110100000111]
R2 = [01001110101101000001101011011010110]

Now assume a “b1 = 2, b2 = 4” decoder, and decode the same two received words.

8.74. Explain in detail how you would modify a burst-trapping decoding circuit for a burst b-error cor-
recting Fire code, so that it is capable of correcting all bursts of length ≤ b1, and also detecting all bursts
of length between b1 + 1 and 2b− b1 (inclusive). (Here b1 is an integer satisfying 1 ≤ b1 < b.) Give a sketch
for your modified decoder.

8.75. Show that if no errors occur, the algorithm in Figure 8.10 will still work.

8.76. Explain how to modify the algorithm of Figure 8.10 so that a burst of length ≥ b + 1 which does
not have the same syndrome as a burst of length ≤ b will be detected.

8.77. The decoding algorithm described in Figure 8.10 is for an (n, n − r) burst-error correcting cyclic
code with generator polynomial g(x). It requires just n executions of the for loop at lines 4–8 to complete
the decoding of one length n codeword. It will also work for a shortened (n0, n0 − r) cyclic code with the
same generator polynomial, but it still requires n, rather than n0, executions of the for loop. If the code has
been drastically shortened, this is unacceptable. For example, the IBM code described in Example 8.24 has
n0 = 152552 but n = 446676598771, and a decoder that required 446676598771 steps to decode one word
of length 152552 would be useless. Fortunately, there is a simple modification of the decoding algorithm

42

that allows the decoding of the shortened code in just n0 steps. It is described in the following pseudocode
listing. (Note the changes from the Figure 8.10 algorithm at lines 7 and 8.)

/* Burst Error Trapping Decoding Algorithm for Shortened Cyclic Codes */

{
1. input R(x);
2. R0(x)← R(x);
3. S0(x)← R0(x) mod g(x);
4. for(j = 0 to n0 − 1) {
5. if (Sj(0) �= 0 and degSj(x) ≤ b− 1)
6. Rj(x)← Rj(x)− Sj(x);
7. Rj+1(x)← [x−1Rj(x)] mod xn0 − 1;
8. Sj+1(x)← [x−1Sj(x)] mod g(x);

}
9. output Rn0(x);
}

(a) Explain why this algorithm works.
(b) Consider the (30, 16) shortened Fire code with g(x) = (x5 +x2 +1)(x9 +1), and use the given algorithm

to decode the following received word:

R = [111101001110100011011011110010].

(c) Describe a shift-register implememtation of this algorithm. [Hint: You will require both a “S(x) →
xS(x) mod g(x)” shift register and a “S(x)→ x−1S(x) mod g(x)” shift register.]

43

