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Summary
We set up two coordinate systems, one in the object space and the other on

the computer screen. We introduce six parameters to describe the slice plane,
and we formulate the coordinate mapping from the screen to the object space.

We designed six alternative algorithms that use the given data to estimate
the density at any location in space and produce a slice of a three-dimensional
array. Some of the algorithms exploit global information and some are self-
adaptive; all but one have advantages in certain circumstances.

We extended a well-known two-dimensional model of a human head model
to build a three-dimensional model of a head, consisting of 10 ellipsoids of
different size, orientation, and density. We produced the data sets by sampling
in the object space (the head model) at evenly spaced intervals; the dimension
of the data set is 128× 128× 128.

We devised several test slices to test our model and algorithms. Some test
slices have a complex shape, some are critical in their position, and some are
really disasters to most algorithms. We also tried different sampling intervals
to verify our ideas about the model.

Based on subjective and objective comparisons, we summarize the strengths
and weaknesses of the algorithms. For common use, we suggest the gradient
algorithm and our GNP-integrated algorithm. In most cases, both can render
well slices with both sharp and smooth edges.

Facts about MRI
MRI has several features relevant to the problem:
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• High precision. The scanning precision of MRI is about 1-3 mm. That is,
MRI can easily distinguish nuances at the size of 1-3 mm. Commonly used
MRI slices are no larger than 25 cm × 25 cm [Gao 1996].

• High contrast. One of the advantages of MRI is the high contrast of its im-
ages, which makes the boundaries of the organs sharp enough for diagnosis
[Gao 1996, Frommhold and Otto 1985].

• Long performance time. The performance time of MRI is several minutes.
For example, a typical scanning of a two-dimensional image (128×128×256)
with pulse repeat time TR = 1.5 s needs about 6 min [Gao 1996]. The time
required is still one of the main drawbacks of MRI. Thus, we cannot expect
that the given data set will be thorough enough to produce a good slice
picture (that may require too much time). Our algorithms should not be too
complex or time consuming.

• Reconstruction Algorithms. Two commonly used methods to reconstruct
the three-dimensional information from the raw data produced by MRI are
Projection Reconstruction (PR) and Fourier Transformation. They require
that the data be evenly sampled through space, so we assume that.

Assumptions, Coordinates and Notations

Assumptions
From the request of the problem and some facts of MRI, we take the follow-

ing assumptions:

• The dimension of the examined object is 256 mm × 256 mm × 256 mm, if
not smaller; this is big enough in most cases. If a larger object is scanned,
we can divide up the data into several cubes.

• The desired precision of pictured slices is 1 mm. We will picture the slices
produced by our algorithms on the computer screen, using one pixel to
present an area of 1 mm × 1 mm.

• The given data set is a three-dimensional arrayA(i, j, k) sampled in the whole
object space with evenly spaced intervals along the coordinate axes. Such
intervals are about 2-4 mm and are big enough for MRI to scan in not too
long a time. Later we discuss the case of the data not being evenly spaced.

• A(i, j, k) takes an integer value from 0 through 255, indicating the water
density, from high density to low density. On our screen, 0 is represented by
black and 255 is represented by white.

• The examined object consists of several different components. We assume
that the density does not change much within one component.
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• The object is the body of some animal or of a human being. Since the organs or
tissues in such body are likely to be tender, we can image that the boundaries
are smooth and sharp in most cases. Exceptions will only happen between
some kind of bones, such as the backbone (they are sharp but not smooth)
or some sick tissues.

• The unknown density of a location is affected by all the given data. However,
the distance between points plays an important role in this problem. Loca-
tions far away (for instance, 50 mm) from the unknown point are assumed
to have little or no effect.

Coordinate Systems
We set up two coordinate systems, one in the data (or object) space and one

on the computer screen, as presented in Figures 1–2. The units (pixel in the
screen image) in these two systems are both 1 mm, for the sake of convenience.
Since the object is of 256 mm × 256 mm × 256 mm, the data space is just
0 ≤ x, y, z < 256.

Figure 1. The data space coordinate sys-
tem.

Figure 2. The screen image coordinate
system. The origin O is the left bottom
corner of the screen image.

Notation
“Density” indicates the water concentration in a small region of the scanned

object at some location. The phrase “unknown point” or “unknown location”
means the point (or the location) where the density of the object is not given as
known data, hence needs to be calculated.

The symbols commonly used in this paper are:
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A(i, j, k) The given three-dimensional data indicating the
density of a location. In some contexts, A also
represents the location.

sX , sY , sZ The three sampling intervals along the Cartesian axes.
Thus, A(i, j, k) is the density of location
(i · sX , j · sY , k · sZ).

α, β, γ, x0, y0, z0 The six parameters to define a slice plane.
D(x, y, z) The density of the object at location (x, y, z).

Analysis of the Problem
For a plane slicing the object, we want to know the density of the object

throughout the plane. If we can convert the coordinates of the points in the slice
plane to the real 3-D coordinates in the object, and calculate the corresponding
densities, the problem is solved. The first step is simple, with some knowledge
of the space geometry. But how about the second step?

Can the Unknown Density Be Known?
From the famous Nyquist sampling theorem, we know that to reconstruct

the whole density information of the scanned object exactly, the sampling in-
tervals must satisfy the inequality

max(sX , sY , sZ) ≤ 1

2fm
, (1)

where fm is the upper limit of the spatial frequency of the density. In our
problem, (1) would need to be satisfied if a slice is required to be pictured
exactly; but we don’t need to do that.

On the one hand, the inequality could never be satisfied, since the fm in
an object is always very large—infinity, in reality. No sampling intervals can
satisfy such an inequality! On the other hand, to picture the slice we do not
need to know exactly what the unknown is. Since the grayscale is from 0 to 255,
an error of less than 1 grayscale unit is acceptable. In fact, a blur to some extent
is always allowable and unavoidable. In this sense, we can know the unknown
density.

How to Know the Unknown Density?
Since we cannot know the unknown density exactly, we must estimate it.

We can choose from:

• Simplicity and Complexity. Our goal is to find an effective but simple
algorithm to produce any slice of the object. We also believe that the real
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object is too complex to describe or estimate by only one kind of algorithm.
So our motto is “If it works, it’s good enough,” and we tried to find several
different algorithms to deal with the different aspects of the real object.

• Local and Global Information. Global information is alluring but very
difficult to use. As human beings, we can easily locate a vessel or a bone in
an MRI image and outline it, using our global impression (thus we can do
reconstruction). But it is difficult for computers to know a shape rather than
a number. Current algorithms can outline an image, but the information
used by computers is local (e.g., the difference between adjacent pixels) but
not global. So we base our main idea on local information but remain alert
to global information. Our experiments show that appropriately using even
a little global information brings great benefit.

• Static and Self-adaptive Algorithm. There are several advantages to a static
algorithm: it is fast and simple (in most cases), it is often designed by aiming
at some aspect of the real application and may be effective in that aspect, and
it is easily controlled and safe. Similar to global information, a self-adaptive
algorithm is powerful but difficult to control.

Description of Our Model
Our model consists of three parts:

• the given data,

• the description of the slice plane, and

• the algorithm to estimate the density of the object at any location, whether
or not this location is included in the given data.

The description of the slice plane is used to convert the coordinates of a point
on the screen to coordinates in space, while the density-estimating algorithm
obtains the density of the point from the known data. Thus, the slice can be
easily displayed on the screen.

We propose six different algorithms to estimate the density, discussed in
detail in the next section. The given data are already described in the problem
and the subsection on Assumptions, so here we treat the mapping from the
screen to space.

Slice Plane
In order to define a slice plane at any orientation and any location in space,

we perform four steps to transform from the XY -plane to any other plane in
the space:
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1. Put a plane, sayP , with its own coordinate systemST (the same as the screen
coordinate system), onto theXY -plane and make the two coordinates exactly
the same origin and orientation.

2. Rotate P around its normal line (i.e., the z-axis) by angle α to make the
orientation of ST differ from XY .

3. Rotate the normal line of P around the origin to a prescribed orientation. In
Figure 3, this orientation is defined by angles β and γ.

Figure 3. Rotate the normal line to a prescribed orientation.

4. Perform a translation to the plane P , moving the origin of P to some prede-
fined point in the space, say (x0, y0, z0).

Thus, using six parameters (α, β, γ, x0, y0, z0), we can define a plane any-
where, with a coordinate system the same as the screen system.

Mapping from the Screen to the Space
Since the coordinate systems of the screen and of the slice plane are the

same, we can change the screen coordinate to the slice plane and then use the
the transformation in the last subsection to convert the slice plane to space
coordinates.

Suppose a pixel in the screen is at position (s, t) and the corresponding
point in the space is at (x, y, z). From the transformation, we get the mapping
equation from the screen to the space and thereby solve the first step of the
problem:xy
z

 =

cos γ − sin γ 0
sin γ cos γ 0

0 0 1

 cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ

cosα − sinα 0
sinα cosα 0

0 0 1

st
0


+

x0

y0

z0

 .
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Density-Estimating Algorithms
Consider a pixel on the screen and the corresponding point U at location

(x, y, z) in the object space. The task of the density-estimating algorithm is to
estimate the density at U , which we denote by D(x, y, z).

We tried five basic types of density-estimating algorithms. Based on ex-
perimental results, we designed an all-around effective method, which we call
GNP-integrated.

Trilinear Interpolation
In general, linear interpolation can produce satisfactory results. In three-

dimensional space, we use trilinear interpolation, which interpolates from the
eight neighbors in three directions. That is,

D(x, y, z) = A(i, j, k) · (1− u) · (1− v) · (1− w)

+A(i+ 1, j, k) · u · (1− v) · (1− w) +A(i, j + 1, k) · (1− u) · v · (1− w)

+A(i, j, k + 1) · (1− u) · (1− v) · w +A(i+ 1, j + 1, k) · u · v · (1− w)

+A(i+ 1, j, k + 1) · u · (1− v) · w +A(i, j + 1, k + 1) · (1− u) · v · w
+A(i+ 1, j + 1, k + 1) · u · v · w, (2)

with

i =

⌊
x

sX

⌋
, j =

⌊
y

sY

⌋
, k =

⌊
z

sZ

⌋
,

u =
x

sX
− i, v=

y

sY
− j, w =

z

sZ
− k,

where bxc is the largest integer no larger than x.
This method uses the density values of eight neighbors to resolve the density

at U . Discontinuity at boundaries can be mitigated by this approach in nearly
all cases. However, this method tends to blur some sharp edges, because of its
intrinsic low-pass filtering attribute.

Nearest-Neighbor
With the preservation of edge sharpness in mind, we tried the nearest-

neighbor method, which assigns to U the density of its nearest neighbor in
space.

This method is fairly simple and the computational load is very low. The
effect produced by the method is quite unstable, although sometimes it really
gives good results. Nevertheless, it partly preserves edge sharpness, and its
power can be amplified if properly combined with other methods.
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Median
The idea comes from the median filtering that is famous in signal and image

processing. Median filtering can preserve the sharp edge of the signal from
great damage while smoothing the signal. In our algorithm, we assign the
median of the density of U ’s eight neighbors to U . The result of this algorithm,
as expected, gives sharp edges but has obvious feather-out, which results in an
unrealistic contour.

Power-Control
Since we believe that the distance between points is very important, we can

conceive that each point within a reasonable distance from U has a “power”
to control the density of U , forcing the density of U to be similar to its own,
and that such power decreases with distance. The overall result should be the
average of the densities of those points, taking their power into account.

We define the power of A(i, j, k) over distance d as:

p =
1

1 + e5(d/d0−1)
,

where d =

√
(x− i · sX)

2
+ (y − j · sY )2 + (z − k · sZ)2 and d0 is a distance

threshold (when d = d0, the power is 1
2 ). Then the density of U is estimated as

D(x, y, z) =

∑
dξ≤2d0

pξ ·A(iξ, jξ, kξ)∑
dξ≤2d0

pξ
, (3)

with the summation over all the known points within a distance 2d0. We use
d0 = 1 mm when the sampling interval is 2 mm.

Though (3) has some similarity to trilinear interpolation (2), the nonlin-
earity in the definition of power makes the edge produced by this algorithm
smoother—but also more blurred.

Here we could adopt another type of power, called the optimal interpolation
function:

p = sinc(πd) =
sin(πd)

πd
, where d =

√(
x

sX
− i
)2

+

(
y

sY
− j
)2

+

(
z

sZ
− k
)2

.

This kind of power is famous, for it is an ideal low-pass filter in the frequency
field, and it is used to reconstruct the original signal (from frequency informa-
tion) in the sampling theorem. But since fm is very large in this problem, we
cannot expect that such a power will do a good job.
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Gradient
The methods above are all based on the effect of one point on another. If

the effect of a point-pair to one unknown point is considered, we can introduce
the gradient method.

Figure 4. Gradient in a point-pair.

Figure 4 shows two given data values A1(i1, j1, k1), A2(i2, j2, k2) and the
unknown point U . The distance between A1 and A2 is d, the projection of−−→A1U

on −−−→A1A2 is dh (which is negative when the angle between −−→A1U and −−−→A1A2 is an
obtuse angle), and dv is the distance from U to −−−→A1A2. The density of point U ,
if only estimated by the gradient from A1 to A2, is

D(x, y, z) = A1 +
dh
d

(A2 −A1).

However, when other data-pairs in the neighborhood of pointU are considered,
the density D is a weighted average of all the effects, and the weight (similar
to the “power”) is defined as:

p =

{
e−dv , when dh ≥ 0;
1
4e
−dv , when dh < 0.

This algorithm exploits not only the density information around the un-
known point U but also the tendency of the density in a local volume. This
makes it self-adaptive to some extent. Further, we can add some global infor-
mation to the algorithm. For example, in our implementation, when A1 and
A2 are close enough (|A1 −A2| < 20), we multiply the weight p by 3; in such
a case, A1 and A2 are deemed to be in the same component, which makes the
probability that U is also in the same component very large. Similarly, when
|A1 −A2| > 80, we multiply the weight p by 0.7, since A1 and A2 may be in
different components.

GNP-Integrated
From experimental results (see the next section), we found out that the

gradient and power-control methods are good at making smooth but slightly
blurred edges, while the nearest-neighbor method always gives a high-contrast
image with rough edges. In an attempt to combine their advantages, we inte-
grated these three methods into one algorithm that we call GNP-integrated. It
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can be described in brief as the combination of the gradient, nearest-neighbor,
and power-control methods in the proportions 3 : 2 : 1.

Test of the Algorithms

Data Sets: The Head Model
Suitable data sets are necessary for testing and demonstrating the algo-

rithms, as well as for comparing different algorithms. Real MRI data would
be best. However, besides the inconvenience involved in getting such data,
another annoying problem is that we would have great difficulty comparing
the pictured slices and the actual slices, since we actually can’t have the latter!

Motivated by the widely accepted two-dimensional Sheep–Logan (S-L)
head model [Gao 1996], where ten ellipses, different in location, shape, ori-
entation and intensity, constitute an object representing a head section, we de-
signed a 3-D head model made up of ten ellipsoids different in location, shape,
orientation and density. The empty space inside the head model is filled with
an ambient color that differs from that of the background outside the model.

We adopt ellipsoids for our data model because of their simplicity and
because the combination of varied ellipsoids can imitate many real objects, such
as a brain or a stomach. We designed three types of ellipsoids with different
density distributions:

• Type 1: Uniform density.

• Type 2 : The density changes linearly from the center to the surface.

• Type 3: The same as type 2 but with additive random noise of a specific
standard deviation. (In our experiments, we don’t analyze this type, since
noise filtering is beyond our concern in this paper.)

With the sampling intervals specified, data sets can be produced easily by
determining in which ellipsoid a sample point lies. Such data sets are large; for
example, when the intervals are all 2 mm, the data set is 128 × 128 × 128 = 2
MB.

In addition, we can also compute the actual slice with our head model. The
computation process is similar to the data set producing process.

Experiments and Results
An important issue is how to test the output of different algorithms. The

two main objectives of this problem, maintaining the sharpness of the edges
and the smoothness of the contours, are difficult to measure numerically, so we
made comparisons by visual inspection (subjective as it is).
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At the same time, although the RMS (root mean square) error cannot com-
prehensively and rationally reflect the quality of a pictured slice, it is still helpful
to the assessment of a pictured slice. So we take the minimization of the RMS
error as our third goal. (This makes sense only for our simulated data, since
the actual slice is unknowable in the real world.)

We also must take the computational loads into consideration, since the
data set is comparatively large.

We did a number of comparisons, from which, we present some represen-
tative slices. Typical slices are presented in Figures 5–8. We examine each in
detail and then draw some conclusions. (In all cases, sX = sY = sZ = 2.)

In Figure 5, the slice is in the middle of the scanned object and parallel
to the XZ-plane. In this case, the slice traverses all the ten ellipsoids, so the
overall performance of each method is easy to evaluate. In Figure 6, the slice
is oblique and all algorithms work well, except for the power-control using the
sinc function. In Figure 7, the slice in Figure 6 is translated by just a tiny distance,
but the performances of some algorithms fall dramatically. In Figure 8, the slice
plane is at an odd angle and in a critical position, which gives our algorithms
a chance to show their performance in an awful situation.

Assessment of the Algorithms
Except for the power-control method (with the sinc function), which is

clearly unsuited to this problem, each method has advantages and disadvan-
tages.

Trilinear
The trilinear method works well in common cases. It usually has a small

RMS error and takes a short time. But it has a tendency to blur the picture,
and it disappointed us in the awful situation (see Figure 8b). When the con-
trast of different components in the scanned object is low, this method is not
recommended.

Nearest-Neighbor and Median
Both the nearest-neighbor method and the median method preserve a sharp

edge and take the least time. But they lose the smoothness of the contours
and cannot discriminate small objects (see Figures 6cd). A small translation
of the slice plane also causes them to produce many more zigzag contours
(see Figure 7cd). Consequently, they have big RMS errors. In spite of these
weaknesses, when the data set is very large and the time element is more
important, or when the zigzag has little bad effect on the result, these methods
are desirable.
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a. Actual slice. b. Trilinear interpolation (14.5).

c. Nearest-neighbor (20.0). d. Median (23.9).

e. Power-control (15.3). f. Power-control (sinc) (29.3).

g. Gradient (12.9). h. GNP-integrated (14.4).

Figure 5. A slice in the middle of the object and parallel to theXZ-plane, with parameters x0 = 0,
y0 = 128, z0 = 0, α = 0, β = 90◦, γ = 90◦. The number following each algorithm name is the
RMS error.
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a. Actual slice. b. Trilinear interpolation (12.3).

c. Nearest-neighbor (15.5). d. Median (18.7).

e. Power-control (13.7). f. Power-control (sinc) (55.8).

g. Gradient (11.3). h. GNP-integrated (12.0).

Figure 6. An oblique slice, with parameters x0 = 0, y0 = 128, z0 = 0, α = 0, β = 45◦, γ = 90◦.
The number following each algorithm name is the RMS error. The black area on the left of each
slice is outside the scanned object.
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a. Actual slice. b. Trilinear interpolation (13.0).

c. Nearest-neighbor (18.8). d. Median (20.6).

e. Power-control (13.8). f. Power-control (sinc) (55.0).

g. Gradient (12.3). h. GNP-integrated (13.9).

Figure 7. The oblique slice of Figure 6 translated a tiny distance (one unit in the y-direction), with
parameters x0 = 0, y0 = 129, z0 = 0, α = 0, β = 45◦, γ = 90◦. The number following each
algorithm name is the RMS error.
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a. Actual slice. b. Trilinear interpolation (12.3).

c. Nearest-neighbor (17.5). d. Median (18.0).

e. Power-control (13.8). f. Power-control (sinc) (68.0).

g. Gradient (12.2). h. GNP-integrated (13.4).

Figure 8. An oblique slice at an odd angle and in a critical position, with parameters x0 = 0,
y0 = 126, z0 = 0, α = 0, β = 70◦, γ = 60◦. The number following each algorithm name is the
RMS error.
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Gradient
The gradient method has the amazing advantage that it has the minimal

RMS error in all cases. More important, the slice as pictured by this method
has rather satisfactory smoothness and sharpness, as is obvious in any of the
figures.

GNP-Integrated
The GNP-integrated method has RMS error a little larger than that of the tri-

linear method; however it excels over any other algorithm when the sharpness
and smoothness are taken into account.

Conclusion
The gradient and GNP-integrated algorithms are the most competent if the

runtime (10-14 s on a Pentium 166 for our implementation) is not a serious
consideration (the other algorithms take 2-3 s). They are especially powerful
in awful situations when some critical oblique slice is desired.

What Happens When the Interval Is Too Large
To verify our discussion on the sampling intervals (see the section Can the

Unknown Density Be Known?), we also tested the result when sX = sY =
sZ = 4. As expected, the quality of the produced slices deteriorated. For
example, some connected thin boundaries in Figure 9 are broken because of
insufficiency of the data.

Figure 9. The slice of Figure 5a, with sampling interval 4 mm, as rendered by the gradient method;
compare with Figures 5a and 5g.

If a data set is not sampled at evenly spaced intervals, or if the data are too
scattered, the user should first use simple interpolation to construct a data set
with evenly spaced sampling intervals.



MRI Slice Picturing 279

Strengths and Weaknesses
• We present several good algorithms that can be selected by the user to fit

different situations.

• We present a clear assessment of different algorithms, based on experimen-
tation on simulated data for a head.

• We implemented all of the algorithms in a Windows95 user-oriented com-
puter simulation with easy input, suitable for repeated experimental re-
search.

• We tried to find objective measurements of sharpness and smoothness but
time did not permit.
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