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Abstract — A fuzzy Elman neural network (FENN) is proposed to identify and 
simulate nonlinear dynamic systems. Each of all the fuzzy rules used in FENN has a 
linear state-space equation as its consequence and the network, by use of firing strengths 
of input variables, combines these Takagi-Sugeno type rules to represent the modeled 
nonlinear system. The context nodes in FENN are used to perform temporal recurrence. 
An online dynamic BP-like learning algorithm is derived. The pendulum system is 
simulated as a testbed for illustrating the better learning and generalization capability of 
the proposed FENN network, compared with the common Elman-type networks. 
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1. INTRODUCTION 

Artificial neural networks (ANNs), including fuzzy neural networks (FNNs), are 
essentially nonlinear. They have already been used to identify, simulate and control 
nonlinear systems [1,2] and have been proved to be universal approximators [3,4,5]. As 
compared with ANNs, FNNs can merge human experience into the networks through 
designating some rules based on prior knowledge. These fuzzy rules in the trained network 
are also easy to understand. 

Recurrent networks, especially the Elman networks [6], are often adopted to identify 
or generate the temporal outputs of nonlinear systems. It is well known that a recurrent 
network is capable of approximating a finite state machine [7] and thus can simulate any 
time series. So recurrent networks are now widely used in fields concerned with temporal 
problems. In published literature, however, all the initial weights of recurrent networks are 
set randomly instead of using any prior knowledge and thus the trained networks are vague 
to human and their convergence speed is slow. In addition, the temporal generalization 
capability of simple recurrent networks is not so good [8]. These two major problems 
make the applications of recurrent networks with temporal identification and control of 
systems more difficult. 

In this paper, a novel network structure called FENN (Fuzzy Elman Neural Network) 
is proposed. It is motivated for integrating fuzzy neural networks with the Elman networks 
so that the above two problems are addressed to a certain degree. This integrated network 
uses the combination of linear state-space equations as its rule consequence with firing 
strengths of input variables to express a nonlinear dynamic system. Due to the fact that the 
context nodes in FENN are conceptually taken from the Elman networks, FENN is also a 
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dynamic network and can be used for reproducing temporal trajectories of the modeled 
system. Starting from either some prior knowledge or zero-knowledge (random initial 
weight settings), FENN can be trained from one or more temporal trajectories of the 
modeled nonlinear system by using a dynamic BP-like learning algorithm. Thus, 
knowledge can be put into the network a priori and extracted easily after the network is 
trained. The simulation results obtained in this paper illustrate the superior performance of 
the proposed dynamic network. 

This paper is organized as follows. In Section 2, the network structure of FENN is 
proposed. The corresponding learning algorithm is described in detail in Section 3. Section 
4 takes a numerical example for demonstrating the feasibility of the proposed FENN. In 
the last section, conclusions are drawn and some future works are discussed. 

2. NETWORK STRUCTURE 

In this section, we introduce our method to describe a nonlinear system by using 
fuzzy rules in the form of linear state-space equations as consequences. The Takagi- 
Sugeno type fuzzy rules are discussed in detail in Subsection A. In Subsection B, the 
network structure of FENN is presented. 

A. Fuzzy rules 

Recently, more and more attention has paid to the Takagi-Sugeno type rules [9] in 
studies of fuzzy neural networks. This significant inference rule provides an analytic way 
of analyzing the stability of fuzzy control systems. If we combine the Takagi-Sugeno 
controllers together with the controlled system and use state-space equations to describe 
the whole system [10], we can get another type of rules to describe nonlinear systems as 
below: 

Rule r: IF x1  is Tx
r
1
 AND ... AND xN  is Tx

r
N

 AND 
  u1  is Tu

r
1
 AND ... AND uM  is Tu

r
M

 
 THEN DX A X B U= +r r  

where [ ]X = x x xN

T

1 2 l  is the inner state vector of the nonlinear system, 

[ ]U = u u uM

T

1 2 l  is the input vector to the system, and N, M are the dimensions; 
Tx

r
i
 and Tu

r
j
 are linguistic terms (fuzzy sets) defining the conditions for xi  and u j  

respectively, according to Rule r; Ar
ij
r

N Na= ×( )  is a matrix of N N×  and 

Br
ij
r

N Mb= ×( )  of N M× . 
Though induced from the Takagi-Sugeno type rules and the controlled system, the 

above form of rules are suitable to simulate or identify any nonlinear systems, whether 
with or without controllers. The antecedent of one such rule defines a fuzzy subspace of X 
and U, and the consequence tells which linear system can the nonlinear system be regarded 
as in that subspace. 

When considered in discrete time, such as modeling using a digital computer, we 
often use the discrete state-space equations instead of the continuous version. Concretely, 
the fuzzy rules become: 
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Rule r: IF x t1 ( )  is Tx
r
1
 AND ... AND x tN ( )  is Tx

r
N

 AND 
  u t1 ( )  is Tu

r
1
 AND ... AND u tM ( )  is Tu

r
M

 
 THEN X A X B U( ) ( ) ( )t t tr r+ = +1  

where [ ]X ( ) ( ) ( ) ( )t x t x t x tN
T

= 1 2 �  is the discrete sample of state vector at 
discrete time t. In following discussion we shall use the latter form of rules. 

In both forms, the output of the system is always defined as: 
 Y CX=  (or Y CX( ) ( )t t= ), (1) 
where C = ×( )cij P N  is a matrix of P N× , and P is the dimension of output vector Y. 

The fuzzy inference procedure is specified as below. First, we use multiplication as 
operation AND to get the firing strength of Rule r: 

 [ ] [ ]f x t u tr T i
i

N

T j
j

M

xi
r

u j
r= ⋅

= =
∏ ∏µ µ( ) ( )

1 1
, (2) 

where µTxi
r  and µTu j

r  are the membership functions of Tx
r
i
 and Tu

r
j
, respectively. After 

normalization of the firing strengths, we get (assuming R is the total number of rules) 

 S f r
r

R

=
=
∑

1
, h f

Sr
r= , (3) 

where S is the summation of firing strengths of all the rules, and hr  is the normalized 
firing strength of Rule r. When the defuzzification is employed, we have 

 
[ ]

X A X B U

X X A X B U

A X B U

AX BU

r r r

r
r

r

R

r
r r

r=

R

r
r

r

R

r
r

r

R

t t t

t h t h t t

h t h t

t t

( ) ( ) ( ),

( ) ( ) ( ) ( )

( ) ( )

( ) ( ),

=

= =

+ = +

+ = + = +

=








 +











= +

∑ ∑

∑ ∑

1

1 1
1 1

1 1

 (4) 

where 

 A A B B= =
= =
∑ ∑h hr

r

r

R

r
r

r

R

1 1
, . (5) 

Using equation (4), the system state transient equation, we can calculate the next state of 
system by current state and input. 

B. Network structure 

Figure 1 shows the seven-layer network structure of FENN, with the basic concepts 
taken from the Elman networks and fuzzy neural networks. In this network, input nodes 
which accept the environment inputs and context nodes which copy the value of the state- 
space vector from layer 5 are all at layer 1 (the Input Layer). They represent the linguistic 
variables known as u j  and xi  in the fuzzy rules. Nodes at layer 2 act as the membership 
functions, translating the linguistic variables from layer 1 into their membership degrees. 
Since there may exist several terms for one linguistic variable, one node in layer 1 may 
have links to several nodes in layer 2, which is accordingly named as the term nodes. The 
number of nodes in the Rule Layer (layer 3) and the one of the fuzzy rules are the same - 
each node represents one fuzzy rule and calculates the firing strength of the rule using 
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membership degrees from layer 2. The connections between layer 2 and layer 3 correspond 
with the antecedent of each fuzzy rule. Layer 4, as the Normalization Layer, simply does 
the normalization of the firing strengths. Then with the normalized firing strengths hr , 
rules are combined at layer 5, the Parameter Layer, where A and B become available. In 
the Linear System Layer, the 6th layer, current state vector X ( )t  and input vector U ( )t  
are used to get the next state X ( +1)t , which is also fed back to the context nodes for 
fuzzy inference at time ( +1)t . The last layer is the Output Layer, multiplying X ( +1)t  
with C to get Y ( )t +1  and outputting it. 

Next we shall describe the feedforward procedure of FENN by giving the detailed 
node functions of each layer, taking one node per layer as example. We shall use notations 
like ui

k[ ]  to denote the ith input to the node in layer k, and o k[ ]  the output of the node in 
layer k. Another issue to mention here is the initial values of the context nodes. Since 
FENN is a recurrent network, the initial values are essential to the temporal output of the 
network. Usually they are preset to 0, as zero-state, but non-zero initial state is also needed 
for some particular case. 

Layer 1: each node in this layer has only one input, either from the environment or 
the Parameter Layer. Function of nodes is to transmit the input values to the next layer, i.e., 
 o u[ ] [ ]1 1= . 

Layer 2: there is only one input to each node at layer 2. That is, each term node can 
link to only one node at layer 1, though each node at layer 1 can link to several nodes at 
layer 2 (as described before). The Gaussian function is adopted here as the membership 
function: 

Layer 7
(Output)

Layer 6
(Linear System)

Layer 5
(Parameter)

Layer 3
(Rule)

Layer 2
(Term)

Layer 1
(Input)

Layer 4
(Normalization)

 x1  u2 u1…… x2

……

……

……

BA

UX

X

Y

C

BR-1 BR

B2B1 ARAR-1

A2A1

 
Figure 1 The seven-layer structure of FENN 
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 o e
u c

s

r

r[ ]
( )

( )

[ ]

22 2

2 2

=
−

−

, (6) 
where cr  and sr  give the center (mean) and width (variation) of the corresponding 
linguistic term of input u[ ]2  in Rule r, i.e., one of Tx

r
i
 or Tu

r
j
. 

Layer 3: in the Rule Layer, the firing strength of each rule is determined [see (2)]. 
Each node in this layer represents a rule and accepts the outputs of all the term nodes 
associated with the rule as inputs. The function of node is fuzzy operator AND: 
(multiplication here) 
 o ui

i

[ ] [ ]3 3= ∏ . (7) 

Layer 4: the Normalization Layer also has the same number of nodes as the rules, 
and is fully connected with the Rule Layer. Nodes here do the function of (3), i.e., 
 o u ui

i

[ ] [ ] [ ]4 4 4= ∑ . (8) 

In (8) we use u[ ]4  to denote the specific input corresponding to the same rule with the 
node. 

Layer 5: this layer has two nodes, one for figuring matrix A and the other for B. 
Though we can use many nodes to represent the components of A and B separately, it is 
more convenient to use matrices. So with a little specialty, its weights of links from layer 4 
are matrices Ar  (to node for A) and Br  (to node for B). It is also fully connected with 
the previous layer. The functions of nodes for A and B are 

 o u o ur
r

r

R

r
r

r

R

for 
[ ] [ ]

for 
[ ] [ ]

A BA B5 5

1

5 5

1
= =

= =
∑ ∑,  (9) 

respectively. 
Layer 6: the Linear System Layer has only one node, which has all the outputs of 

layer 1 and layer 5 connected to it as inputs. Using matrix form of inputs and output, we 
have [see (5)] 
 o o o o o[ ]

for 
[ ]

context
[1]

for 
[ ]

input
[1]6 5 5= + = +AX BU A B . 

So the output of layer 6 is X ( +1)t  in (4). 
Layer 7: simply as layer 1, the unique node in the Output Layer passes the input 

value from layer 6 to output. The only difference is that the weight of the link is matrix C, 
not unity,  
 Y C= = ⋅o u[ ] [ ]7 7  (10) 

This proposed network structure implements the dynamic system combined by our 
discrete fuzzy rules and the structure of recurrent networks. With preset human knowledge, 
the network can do some tasks well. But it will do much better after learning rules from 
teaching examples. In the next section, a learning algorithm will be put forth to adjust the 
variable parameters in FENN, such as cr , sr , Ar , Br , and C. 

3. LEARNING ALGORITHM 

Learning of the parameters is based on sample temporal trajectories. In this section, a 
learning algorithm which learns a single trajectory per iteration by points (STP, Single 
Trajectory learning by Points) will be proposed. 

In the STP learning algorithm, one iteration is comprised of all the time points of the 
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learning trajectory, and the network parameters are updated online. At one time point, 
FENN uses the current value of parameters to get the output, and runs the learning 
algorithm to adjust the parameters. Then in the next time point, the updated parameters are 
used, and learning will be processed again. After the whole trajectory was passed, one 
iteration completes and in the next iteration, the same trajectory or an other one would be 
learned. 

Given the initial state X (0)  and the desired output Yd et t t( ),  = 1 2, , ,l , the error at 
time t is defined as 

 [ ]e t t t y t y td di i
i

P

( ) ( ) ( ) ( ) ( )= =
=
∑

1
2

1
2

2 2

1
Y Y- - , (11) 

and the target of learning is to minimize each e t t= te( ),  1 2, , ,� . The gradient descent 
technique is used here as a general learning rule: (assuming w is an adjustable parameter, 
e.g. aij

r ) 

 ∆w t
e t
w t

( )
( )
( )

∝
∂
∂

, 

 w t w t w t w t
e t
w t

( ) ( ) ( ) ( )
( )
( )

+ +1 = = −∆ η
∂
∂

, (12) 

where η > 0  is the learning rate. We shall show how to compute ∂ ∂e t w t( ) ( )  in a 
recurrent situation, giving both the equations in a general case and for specified parameters. 
If possible, we shall also give the matrix form of the equations, for its concision and 
efficiency. 

From (1) and (11) we can get 

 [ ]∂
∂

∂
∂

∂
∂

e t
x t

e t
y t

y t
x t

y t y t c t
i j

j

ij

P

dj j ji
j

P( )
( )

( )
( )

( )
( )

( ) ( ) ( )= = − −
= =
∑ ∑

1 1
, 

or in matrix form 

 [ ]∂
∂

e t
t

t t tT d
T( )

( )
( ) ( ) ( )

X
Y Y C= − − . 

Since we want to compute ∂ ∂e t w t( ) ( ) , we should also know the derivative of X ( )t  to 
the adjustable parameter w. Taking into account the recurrent property [see (4)], we have 

 
∂

∂
∂

∂
∂

∂
∂

∂

+ +

=
= +

−
−

∑
x t
w

x t
w

x t
x t

x t
w

i i i

j

j

j

N( ) ( ) ( )
( )

( )
1

1

1
 

or in matrix form, 

 
∂

∂
∂

∂
∂

∂
∂

∂

+ +

= +
−

−X X X
X

X( ) ( ) ( )
( )

( )t
w

t
w

t
t

t
wT 1

1
, (13) 

which is a recursive definition of the ordered derivative ∂ ∂+ X ( )t w . With the initial 
value ( ∂ ∂+ X (0) w ) given, we can calculate ∂ ∂+ X ( )t w  step by step, and use 

 [ ]∂
∂

∂
∂

∂
∂

∂
∂

e t
w

e t
t

t
w

t t t
t

wT d
T( ) ( )

( )
( )

( ) ( ) ( )
( )

= = − −
+ +

X
X

Y Y C
X

 (14) 

and (12) to update w. 
From (4) and (5) we can get 
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∂
∂

δ

∂
∂

δ

x t
a t

h x t

x t
b t

h u t

k

ij
r ki r j

k

ij
r ki r j

( )
( )

( ),

( )
( )

( ),

= −

= −

1

1
 (15) 

where δki  is the Kronecker symbol which is 1 when k and i are equal, otherwise 0. 
Together with (3), we have 

 
∂

∂
x t

f
x t x t

S
k

r

k
r

k( ) ( ) ( )
=

−
, 

Since [see (2) and (6)] 

 
∂

∂
∂

∂µ

∂µ

∂
f

x t
f

x t
f

x t c

s
r

j

r

T

T

j
r

j T

Tx j
r

x j
r

x j
r

x j
r( ) ( )

( )

−
=

−
= −

− −

1 1

1
2 , 

we can get 

 
[ ]

∂
∂

∂
∂

∂
∂

x t
x t

a
x t

f
f

x t

a h x t x t
x t c

s

i

j
ij

i

r

r

jr

R

ij r i
r

i

j T

Tr

R
x j
r

x j
r

( )
( )

( )
( )

( ) ( )
( )

−
= +

−

= − −
− −

=

=

∑

∑

1 1
1

1

2
1

.
 (16) 

Using (13), (15) and (16), we can calculate the ordered derivative for aij
r  and bij

r . 
Though we can easily get equations below from (2) and (6), 

 

∂
∂

∂
∂

f
c

f
x t c

s

f
c

f
u t c

s

r

T
r

i T

T

r

T
r

j T

T

xi
r

xi
r

xi
r

u j
r

u j
r

u j
r

=
− −

=
− −

( )

( )

1

1

2

2

,

,

 

∂
∂

∂
∂

f
s

f
x t c

s

f
s

f
u t c

s

r

T
r

i T

T

r

T
r

j T

T

xi
r

xi
r

xi
r

u j
r

u j
r

u j
r

=
− −

=
− −

[ ]
,

[ ]
,

( )

( )

1

1

2

3

2

3

 (17) 

the derivatives to the parameters of membership functions, i.e., c and s, are not so easy to 
get in that there exists the probability of two or more rules using the same linguistic term. 
If we assign each linguistic term a different serial number, said v , from 1 to V , then the 
linguistic term Tv  may be used in Rule r1 , r2 , … That is, it may be called Tx

r
i

1  (or Tu
r
i

1 ), 

Tx
r
j

2  (or Tu
r
j

2 ), …, in the previous part of this paper. To clearly note this point, we shall use 
the notations cv  and sv  to represent the center and the width of the membership 
function µ v  of term Tv , and >xv

r  the corresponding input variable with Tv  in Rule r, no 
matter it is xi  or u j . Thus (17) becomes 

 
∂
∂

f
c

f
x t c

s
r

v
r

v
r

v

v
=

− −> ( )1
2 , 

[ ]∂
∂
f
s

f
x t c

s
r

v
r

v
r

v

v
=

− −> ( )1
2

3 , 

and we can calculate ∂ ∂x t ci v( )  and ∂ ∂x t si v( )  as 

 
[ ]

[ ] [ ]

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

x t
c

x t
f

f
c

h x t x t
x t c

s

x t
s

x t
f

f
s

h x t x t
x t c

s

i

v

i

r

r

vr
r i

r
i

v
r

v

vr

i

v

i

r

r

vr
r i

r
i

v
r

v

vr

( ) ( )
( ) ( )

>
,

( ) ( )
( ) ( )

>

,

= = −
− −

= = −
− −

∑ ∑

∑ ∑

( )

( )

1

1

2

2

3

 (18) 
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where summation is for all the rules containing Tv . So, using (13) with (16) and (18), 
∂ ∂+ X ( )t cv  and ∂ ∂+ X ( )t sv  are available. 

The updating of matrix C is really simple and plain. By (1) or (10), we have 

 [ ]∂
∂

∂
∂

∂
∂

e t
c t

e t
y t

y t
c t

y t y t x t
ij i

i

ij
di i j

( )
( )

( )
( )

( )
( )

( ) ( ) ( )= = − − , 

or in matrix form 

 [ ]∂
∂

e t
t

t t td
T( )

( )
( ) ( ) ( )

C
Y Y X= − − , 

and from (12), C is updated by 

 
[ ]
[ ]

c t c t y t y t x t

t t t t t
ij ij di i j

d
T

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

+ = + −

+ = + −

|1

1

η

ηC C Y Y X
. (19) 

With (12~16) and (18~19), all the updating equations are given. Some of them are 
recursive, reflecting the recurrent property of FENN. The initial values of those recurrent 
items, such as ∂ ∂+ x t ak ij

r( )  in (15), are set to zero in the beginning of learning. Because 
of the gradient descent characteristics, our STP learning algorithm is also called a BP-like 
learning algorithm, or RTRL (real-time recurrent learning) as in [11]. 

When learning a nonlinear system, different trajectories are needed to overall 
describe the system. Usually, multiple trajectories are learned one by one, and one pass of 
such learning (called a cycle) is repeated until some training convergence criterion is met. 
A variety of such cycle strategy, which does not distribute the learning iterations among 
every trajectories evenly in one cycle, may produce more efficient learning. In such 
unevenly strategy, we can give more learning chances (iterations) to the less learned 
trajectory (often with larger error), and thus speed up the total learning. Next section we 
will show how to do this by an example. 

4. COMPUTER SIMULATION - THE PENDULUM SYSTEM 

We employ the pendulum system to test the capability 
and generalization of FENN. Figure 2 gives the scheme of the 
proposed system. A rigid zero-mass pole with length L 
connects a pendulum ball and a frictionless pivot at the ceiling. 
The mass of the pendulum ball is M, and its size can be 
omitted with respect to L. The pole (together with the ball) 
can rotate around the pivot, against the friction f from the air 
to the ball, which can be simply quantified as: 
 f v Kv= − ⋅sgn( ) 2 , (20) 
where v L= Dθ  is the line velocity of the pendulum ball, and 
θ  is the angle between the pole and the vertical direction. 
The item − sgn( )v  (sgn(v) is the sign of v) in (20) shows that 

f always counteracts the movement of the ball, and its direction is perpendicular with the 
moving pole. 

If we exert a horizontal force to the ball, or give the pendulum system a non-zero 
initial position (θ ≠ 0) or velocity ( �θ ≠ 0), the ball will rotate around the pivot. Below is 

F

 f

Mg

θ

 
Figure 2 The pendulum 

system 
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its kinetic equation, 

 DD cos sin sgn( D ) Dθ θ θ θ θ= − −
F

ML
g
L

KL
M

2 , 

where g m s= 9 8 2.  is the acceleration of gravity. Using two state variables x1 , x2  to 
represent θ  and Dθ  respectively, the state-space equation of the system is (for simplicity, 
let K, L, M all be 1) 

 
( ) ( ) ( )X U

X X U

= = =

= − −








 +











x x F

g x x x x

T T
1 2

1 1 2 1

0 1 0

θ θD , ,

D

sin cos
.
 (21) 

Applying 5-order Runge-Kutta method to (21), we can get the ‘continuous’ states of 
the testing system. The input (U) and states (X) are sampled every T  ( = 0 25. ) second and 
the total time is 25 second. Thus the number of sample points is t Te = =25 100 . Given 
initial state X ( )0 , by sampling we can get U U( ) ~ ( )0 1te −  and X X( ) ~ ( )1 te , where 

 ( )U ( ) [( ) ]t F t T= + 1
2 , ( )X ( ) ( ) D ( )t t T t T

T
= ⋅ ⋅θ θ . 

In this way, we got 12 trajectories, with different combinations of force F and initial state 
X. (see Table 1) 

We use three linguistic terms for each state variable (see Table 3), which are 
Negative, Zero and Positive. (Though using the same name, the term Positive for x1  is 
independent with the one for x2 , and so are Zero and Negative.) Thus there are totally 
nine rules, i.e., R = 9 . Before training, we set all the Ar  and Br  to zero, and C to unity, 
making the state-space vector X the output. We use the first t L  ( = 20) data of trajectories 
1~5 to train FENN, and test it with all the te ( = 100 ) data of all the twelve trajectories. 
The strategy of learning multiple trajectories mentioned in last section is performed as: 
each learning cycle is made up by ten iterations, five of which are equally allotted to those 
learned trajectories while the rest five are scattered with the number proportional to the 
current error of the trajectories. Adaptive learning rate is also adopted in learning. 

In the first stage of learning, only Ar  and Br  are learned to set up the initial fuzzy 
rules, leaving the membership parameters and matrix C unmodified. After 1200 cycles of 
learning, we get a very impressive result, which is presented in Figure 4 to Figure 15. (The 
continuous curve and dashed curve indicate the desired curves of θ  and Cθ , respectively; 
the notation ‘o’ and ‘+’ represent the actual discrete outputs of FENN.) To diminish the 
space of figures, only the first 50 data points of each trajectory (except trajectory 12) are 
shown, with the RMS errors of state x1 ( )θ  and x2  ( D )θ  listed respectively above the 

Table 1 Twelve data sets of the pendulum system (the variable t in the 
table is a continuous parameter, not the discrete t in FENN.) 

No. Initial State X Force F No. Initial State X Force F 

1 (π/2, 0)T 0 7 (5π/12, -1)T 4sin(2t) 
2 (π/2, -1)T 4sin(2t) 8 (-π/2, 0)T 0 
3 (-π/2, 1)T 4sin(2t) 9 (5π/12, -1)T 6sin(2t) 
4 (0, 2.5)T 8sin(2t) 10 (5π/12, 0)T 5sin(5t) 
5 (0, 0)T see Figure 3 11 (5π/12, 0)T see Figure 3 
6 (5π/12, 0)T 0 12 (0, 0)T see Figure 3 
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figures. 
Though trained with only t L  ( = 20) data points of the first five trajectories, FENN 

exhibits a great capability of generalization and succeeds in simulating the pendulum 
system at data points of t t L>  and/or under some unlearned conditions. Following are 
discussions about the simulation result: 

� Among the learned trajectories, the error of trajectory 5 is the biggest. The 
reason is that 20 data points are not enough for FENN to grasp its periodicity 
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Figure 3 Forces of trajectories 5,11,12 
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which is about 6s. The maximal error is taken place between time 5~6s, just 
after where FENN ends its learning. 

� Trajectories 6, 7, 8 (Figure 9, Figure 10, Figure 11) give the example of starting 
the pendulum with some unlearned initial states. Though simple, the network 
does a good work. 

� Trajectories 9 (Figure 12) and 11 (Figure 14) show that FENN can deal with the 
change in input amplitude as well as the initial state. 
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Figure 9 
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Figure 10 
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Figure 11 
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Figure 12 
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Figure 13 
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� It is easy to notice that during the training we use force of sine type only with 
frequency 2 (rad/s), so the well simulation of trajectory 10 (Figure 13) which is 
under the force of sin( )5t , is amazing. It should be pointed out that the 
generalization of frequency (from 2 to 5) is not intrinsically hold by the 
Elman-style networks [8]. This test shows FENN exhibits better generalization 
capability than the common Elman networks. 

� Trajectory 12 (Figure 15) is a really difficult test to FENN. The force exerted to 
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Figure 15 Simulation of trajectory 12 before membership learning 
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Figure 16 Trajectory 12 is better simulated by FENN after membership learning 
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the pendulum is at a very lower frequency than the characteristic one of the 
system, and the oscillating of pendulum seems with less order than previous 
trajectories. Though FENN does not give a perfect simulation on such condition, 
it really give the tendency of the pendulum, which is not easy. 

After the rules have been extracted from the training data, we move to the second 
stage of learning – tuning the membership functions. After making the membership 
function parameters adjustable, FENN continues its learning for 606 cycles, and we get a 
little better test result (Table 2). We give another simulation of trajectory 12 in Figure 16. 
Compared to Figure 15, though still not very good, Figure 16 gives the two states (angle 
and speed) curves more closely to the desired ones, and the speed curve in latter 
simulation has clearly more similarities in the curve tendency than the former one. Reader 
would remember that trajectory 12 is not included in FENN’s learning data, so this 
improving just reflects the improved generalization of FENN after the membership 
learning. 

Table 3 gives the membership parameters (center and width) before and after such 
learning. Table 4 and Table 5 give the matrices Ar  and Br  of all the nine fuzzy rules 
after the whole 1806-cycle learning, arranged in a big 3 3×  matrix. 

5. CONCLUSION 

The proposed FENN architecture exhibits several features: 
� The new form of fuzzy rules. FENN employs the new form of fuzzy rules with 

linear state-space equations as the consequences. The linear state-space 
equations are convenient to human to represent dynamic systems, and in 
common sense such representation can grasp the inherent essential of the system. 
Natural and simple as the fuzzy set and fuzzy inference mechanism are to define 
the different aspects of a complex system, the nonlinearity of membership 
functions enables the network to simulate a nonlinear system well. 

Table 2 Simulation errors 

No. Errors after 1200 
cycles 

Errors after another 
606 cycles No. Errors after 1200 

cycles 
Errors after another 

606 cycles 
1 0.02361, 0.03170 0.02252, 0.05346 7 0.04050, 0.06623 0.03267, 0.05567 
2 0.04170, 0.06655 0.03357, 0.05844 8 0.07300, 0.1893 0.08501, 0.2160 
3 0.04631, 0.06702 0.03659, 0.05962 9 0.05162, 0.08384 0.04246, 0.06607 
4 0.07048, 0.06216 0.06111, 0.05579 10 0.03067, 0.1119 0.03160, 0.1071 
5 0.04115, 0.1242 0.04466, 0.1021 11 0.02680, 0.05337 0.02303, 0.04897 
6 0.02437, 0.04083 0.02314, 0.04082 12 0.04069, 0.1434 0.04804, 0.1222 

Table 3 Linguistic terms 

state variable x1  x2  

linguistic term Negative Zero Positive Negative Zero Positive 

initial value 
(mid, wid) 

-1.0472 
0.5236 

0.0000 
0.5236 

1.0472 
0.5236 

-2 
1 

0 
1 

2 
1 

learned value 
(mid, wid) 

-1.0509 
0.5256 

0.0238 
0.5582 

1.0548 
0.5227 

-2.0197 
0.9772 

-0.0020 
1.0337 

2.0115 
0.9840 
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� The context nodes. The current state variables of the system are duplicated by 
the context nodes, and are used as part of the inputs at the next time. Like the 
Elman networks where the context layer copies the internal representation of the 
temporary inputs, the state vector happens to be the perfect form of internal 
representation of a dynamic system. This coincidence shows that the idea in the 
Elman networks and FENN are suitable for simulation of the dynamic systems. 

� Strong generalization capability. In the simulation of the pendulum system, 
FENN shows a very strong generalization on different initial states and force 
inputs. This point can be deduced intuitively if we believe that FENN has the 
ability to grasp the inner qualities of the modeled system. 

� Rules presetting and easy extraction. The a priori human knowledge can easily 
integrated into the network by the forms of fuzzy rules, and the learned rules can 
also easily extracted from the network. This is already discussed. 

Though FENN shows a promising capability, there is still much work to do: 
� Automatic knowledge extraction. In the simulation of the pendulum system, for 

its simplicity, we preset the crude membership functions and fix matrix C to 
unity. Though we can start learning from some random settings, it may be slow 
for FENN to converge and the learning may stick in local minima. So 
techniques like self-organization should be developed to automatically extract 
(crude) rules from the training data, before the time-consuming learning. 

� Stability analysis and assurance. Since dynamic systems are involved, the 
stability of the network should be studied. There exist occasions that the 
network jump to infinity output during the learning. So both the stability 
principles of the network and the techniques to ensure the stability of the 

Table 4 Matrix Ar  of all the nine rules after learning. 

x2  ( D )θ  

x1 ( )θ  
Negative Zero Positive 

Negative 
0 2874 0 3629
0 2666 01577
. .
. .− −









  10646 0 2686

17172 0 6214
. .
. .−









  0 4592 0 0860

0 7553 0 7015
. .
. .

−
−









  

Zero 
0 2336 01826
0 6706 0 4394
. .
. .−









  0 8364 0 2932

2 4458 0 6865
. .
. .−









  01761 01522

0 6387 0 4415
. .
. .−









  

Positive 
0 3885 0 0665
0 7366 0 7671
. .
. .

−
−









  0 9584 0 0820

16243 0 7648
. .
. .−









  0 3141 0 5258

0 2483 01755
. .
. .− −









  

Table 5 Matrix Br  of all the nine rules after learning. 
x2  ( D )θ  

x1 ( )θ  
Negative Zero Positive 

Negative 
0 0462
01156
.
.









  −









0 0287
0 0517
.
.

 0 0858
0 0481
.
.









  

Zero 
0 0311
01749
.
.









  0 0437

0 2675
.
.









  0 0312

01937
.
.









  

Positive 
0 0095
01629
.
.









  0 0039

0 0358
.
.









  0 0268

0 0737
.
.
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learning should be explored. 
� Continuous form of FENN. Though we can use a discrete one and interpolate 

among the discrete outputs, the continuous form of FENN may be more useful 
in real application, and is easy to fulfill with fuzzy chip or analog circuit. The 
network structure need no much change, but the learning algorithm should be 
rewritten to meet the continuous case. 
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