
CS 138b Computer Algorithm
Final Exam

Ling Li, ling@cs.caltech.edu
March 16, 2001

F.1 Perfect matching with min max weight

Assume the number of vertices in G is even, i.e., |V | = 2n. Otherwise there doesn’t exist a perfect
matching. Let m = |E|. A naive algorithm to do the job is

Init: Sort the weights w(e) for e ∈ E in ascending order. Let k = n, and G′ = (V,E′), where E′

only contains k edges with the first k smallest weights. Go to Match.

Match: Apply the algorithm of Micali and Vazirani for finding maximum matching in general
graphs to G′. If the maximum matching is a perfect matching, output it and halt. Otherwise
go to Next.

Next: If k ≥ m, output no perfect matching and halt. Otherwise, k ← k + 1, and add the edge
with the kth smallest weight (which is the edge with smallest weight which is not in E′) into
E′. Go to Match.

The correctness of this algorithm is very obvious. The worst time is (m−n) times O(m
√
n) which

is the time of the algorithm of Micali and Vazirani, plus the time for sorting and adding edges,
which is O(m logm). Thus the total time is O(m2√n).

Another way is to convert the problem into a minimum weighted perfect matching problem, by
setting the weight of edge e as nw(e). Let G′ denote the transformed graph. A minimum weighted
perfect matching M in G′ corresponds to a perfect matching M in G with minimum maxe∈M w(e),
since the weights sum is solely decided by the maximum w in the matching. We use n as the base
in case that there are (at most) n − 1 edges with the same w. The Edmonds’ blossom algorithm
can find a minimum weighted perfect matching in O(n2m). Thus the total time for this algorithm
is also O(n2m).

1

CS 138b Computer Algorithm
Final Exam

Ling Li, ling@cs.caltech.edu
March 16, 2001

F.2 Directed matching

Idea: Construct a bipartite graph with twice number of vertices as in G and reduce the problem
to a perfect matching in that bipartite graph.

Algorithm:

Trans: L = ∅, R = ∅, E′ = ∅. For each vertex v ∈ V , L ← L ∪ {lv}, R ← R ∪ {rv}. For
every edge (u, v) ∈ E, E′ ← E′ ∪ {(lu, rv)}. We get a bipartite graph G′ = (L,R,E′).
Go to Match.

Match: Apply the algorithm of Hopcroft and Karp for unweighted matching in bipartite
graphs to G′. If there is no perfect matching, declare there is no directed matching in
G and halt. Otherwise go to TransBack.

TransBack: Let M ′ denote the perfect matching found in Match. M = ∅. For every edge
(lu, rv) ∈M , M ←M∪{(u, v)}. Declare H = (V,M) is a directed matching (subgraph)
in G and halt.

Correctness proof: After the step Trans, we have L = {lv : v ∈ V }, R = {rv : v ∈ V }, and
E′ = {(lu, rv) : (u, v) ∈ E}.

• For any directed matching H = (V,M) in G, the in-degree and out-degree of every
vertex in H is 1. Thus we have

Properties M : For every vertex u ∈ V , there exists one and only one vertex v ∈ V
such that (u, v) ∈ M ; For every vertex v ∈ V , there exists one and only one vertex
u ∈ V such that (u, v) ∈M .

Construct M ′ = {(lu, rv) : (u, v) ∈M}. Thus from M ⊆ E, M ′ ⊆ E′. And by the
construction of L and R, we have properties similar to those stated above:

Properties M ′: For every vertex lu ∈ L, there exists one and only one vertex rv ∈ R
such that (lu, rv) ∈ M ; For every vertex rv ∈ R, there exists one and only one
vertex lu ∈ L such that (lu, rv) ∈M .

Hence M is a perfect matching in the bipartite graph G′.

• For any perfect matching M ′ in G′, construct M = {(u, v) : (lu, rv) ∈M ′}. Since E′ is
constructed from E, it is obviously M ⊆ E. And from M ′ is a perfect matching, we
have properties M ′ above. Thus we also get properties M above. Thus H = (V,M) is
a directed matching in G.

Hence finding a directed matching in G is equivalent to finding a perfect matching in G′.

Runtime analysis: Let n = |V | and m = |E|. The runtime of Trans is O(n + m) and that of
Match is O(m

√
n). The step TransBack takes time O(n), since there are exactly n edges

in a perfect matching. Thus the total time is O(n+m
√
n).

2

CS 138b Computer Algorithm
Final Exam

Ling Li, ling@cs.caltech.edu
March 16, 2001

F.3 Vertex-disjoint paths

Main idea: Transform the graph G into a unit capacity graph G′ such that any flow in G′ consists
of vertex-disjoint path flows. And the value of the max flow in G′ is the maximum number
of vertex-disjoint paths in G.

Algorithm:

Trans: Initially V ′ = ∅, E′ = ∅. For every vertex v ∈ V , add two vertices iv and ov into V ′,
and add an edge (iv, ov) into E′. For every edge (u, v) ∈ E, add an edge (ou, iv) into
E′. G′ = (V ′, E′, c), where c = 1 for all edges in E′. Go to Maxflow.

Maxflow: Use Dinic’s algorithm to get a max flow f from os to it in G′. Output |f | as the
maximum number of vertex-disjoint paths from s to t in G.

Correctness proof: After Trans, we get V ′ = {iv, ov : v ∈ V } and E′ = {(iv, ov) : v ∈ V } ∪
{(ou, iv) : (u, v) ∈ E}.

• Let P be any set of vertex-disjoint paths from s to t inG. For each path (u0, u1, . . . , uk) ∈
P with u0 = s, uk = t, there is a path p′ = (ou0 , iu1 , ou1 , . . . , iuk−1

, ouk−1
, iuk) in G′

with ou0 = os, iuk = it. Let P ′ be the set of those p′ paths. Since paths in P are vertex-
disjoint (they do not share vertices other than s, t), paths in P ′ are also vertex-disjoint.
Then P ′ can be regarded as a collection of vertex-disjoint path flows in G′, each path
flow having value 1. Thus we get a flow in G′ from os to it, with value |P ′| = |P |, the
number of paths in P .

• In Homework 13.2, we have shown that for a unit capacity graph with a max flow f ,
there are |f | edge-disjoint paths from s to t. In G′, any edge must have ou as one end
and iv as the other end, for some u and v. Thus any path flow from os to it must be
p′ = (os, iu1 , ou1 , . . . , iuk−1

, ouk−1
, it), for some ui. By the construction in Trans, there

is only one edge from iui to oui , thus the ‘edge-disjoint’ paths in G′ are also ‘vertex-
disjoint’.∗ Thus for any max flow f in G′, there are |f | vertex-disjoint paths from os
to it in G′. Those paths correspond to |f | vertex-disjoint paths in G, with the inverse
mapping mentioned in the above paragraph.

Thus the maximum number of vertex-disjoint paths in G is just the value of max flow in G′.

Runtime analysis: Let n = |V | and m = |E|. The runtime of Trans is O(n+m) and after that,
|V ′| = 2n, |E′| = n+m. The time for Dinic’s algorithm is O(|E′| |V ′|2) = O((n+m)n2). Thus
the total runtime is O(n2(n+m)). Or, if the MPM algorithm is used in the step Maxflow,
the total runtime is O(n3 +m).

∗Even taking into consideration that there may exist path (os, it), that is right since we do not count in os and
it as shared vertices for vertex-disjoint paths.

3

CS 138b Computer Algorithm
Final Exam

Ling Li, ling@cs.caltech.edu
March 16, 2001

F.4 Identification and square root

(a) For any quadratic residue x ∈ Z∗n, x has 4 different square roots in Z∗n. If we get two of
them, r1, r2 and r1 6≡ ±r2 modn, then from (r1 + r2)(r1 − r2) = r2

1 − r2
2 ≡ 0 modn, we know

(r1 + r2) modn is one of p and q, and (r1 − r2) modn is the other. Let A be the algorithm
assumed in the problem which can compute a square root of xmodn in time p, where p is a
polynomial of logn. Thus we have the algorithm below:

Loop: Select r ∈U {1, 2, . . . , n− 1}. If gcd(n, r) 6= 1, output r as p, n/r as q, and halt the
algorithm. Otherwise go to Root.

Root: Calculate x ≡ r2 modn. Use A to get a square root r′ of x. If r 6≡ r′modn, output
(r + r′) modn as p and (r − r′) modn as q, and halt. Otherwise go to Loop.

For any selected r, with probability no more than 1
2 (since the algorithm may halt in Loop),

the algorithm will halt in Root without going back to Loop. Thus the expected runtime of
this algorithm is no more than

p+
p

2
+
p

4
+ · · · = 2p,

which is also polynomial in log n. (WLOG, we assume that p > log2 n. Thus the time of gcd
and division and multiplication of numbers of logn bits can be omitted compared to p.)

(b) For b = 0, Maggie can select r and compute x ≡ r2 modn. For b = 1, Maggie can select
y and compute x ≡ y2u−1 modn. Thus if Maggie knew which bit b Victor would send, she
could fool Victor. However, she can not know in advance which b Victor will send. Thus
to fool Victor no matter what x she sent, Maggie must have the ability to get a pair of y
and r in polynomial time such that x ≡ r2 modn and u ≡ y2x−1 modn. Thus by calculating
a ≡ yr−1 modn, she get u ≡ y2x−1 ≡ (yr−1)2 ≡ a2 modn. That is, Maggie can compute a
square root of u. The total time to calculate a is still polynomial in logn since to get a from
y and r can be done in O(log2 n).

(c) I have two readings for this question. One is that Maggie always chooses an r and compute
x ≡ r2 modn. The other is that Maggie can use either way in (b) to compute x. For the
first case, Maggie can always fool Victor when he chooses b = 0. But for b = 1, she has to
get y such that u ≡ y2x−1 modn in polynomial time in order to fool Victor. For the second
case, she can fool Victor if b is the ‘correct’ bit with respect to her choice of x. That is, if
she chooses x ≡ y2u−1 modn and b = 1, or if she chooses x ≡ r2 modn and b = 0, she can
fool Victor. For the other b, she also has to get the pair of y and r such that x ≡ r2 modn
and u ≡ y2x−1 modn. Thus for either reading, in order to fool Victor, the probability that
Maggie has to know y and r simultaneously is 1

2 .†

From the analysis in (b), knowing y and r simultaneously leads to solving a square root
of u. Since the probability that Maggie can fool Victor is at least 3

4 , then the probability
†Here we assume b is uniformly chosen by Victor. If b is not uniformly chosen, for example, P (b = 0) > 3

4
, then

under this situation, Maggie can always fool Victor with probability larger than 3
4

by using x ≡ r2 modn, without
the ability to compute a square root of u.

4

CS 138b Computer Algorithm
Final Exam

Ling Li, ling@cs.caltech.edu
March 16, 2001

that she can compute a is at least 1
2 (otherwise the probability of fooling Victor is less than

1
2 + 1

2 ×
1
2 = 3

4).

Thus she can use an algorithm similar to that in (a), to randomly select x and compute a.
The expected runtime is twice the time she uses to calculate a in one run, which is polynomial.
Thus she can compute a square root of u in expected polynomial time.

An extension of this question is that if Maggie can compute a square root of u in polynomial
time with probability at least 1

p , where p is any polynomial in log n, then she can calculate a
square root of u in expected polynomial time.

(d) Since we are pretty sure that there is no algorithm to factor n in time polynomial in log n, the
probability that Maggie can compute a square root of u in polynomial time is not nonnegligible
(otherwise from (c) and (a), n can be factorized in expected polynomial time.) Maggie can
only guess a b, select a strategy to compute x according to b, and hope that Victor will also
choose that b. Thus the probability that Maggie can fool Victor in one trial is at most 1

2 .
Hence for T trials, the probability that Maggie fools Victor is at most 2−T .

However, we assumed in above discussion that the probability of Maggie fooling Victor in
those T trials are independent. This is true if the x used in every trial is different, which
requires T is small relative to n (such as T = logc n for some constant c). If T is really large,
say T > n, then during those trials some x and b pairs would appear several times and thus
Maggie can reuse some of her answers in previous trials. Hence the probability that Maggie
fools Victor would be larger than 2−T , for T large relative to n.

5

CS 138b Computer Algorithm
Final Exam

Ling Li, ling@cs.caltech.edu
March 16, 2001

F.5 SOP and PRG

Since f is a strong one-way function, by definition there exists a PPT F such that F (x) = f(x).
Thus we can design a statistical test T such that T (x1 · · ·xnxn+1 · · ·x2n) = 1 if and only if
F (x1 · · ·xn) = xn+1 · · ·x2n. Obviously T is a PPT.

For h(x) = (f(x), f(f(x))), we have T (h(x)) is always 1, i.e.,

Px←Un(T (h(x)) = 1) = 1.

However, it is obvious that

Px←U2n(T (x) = 1) =
1
2n
.

Thus h(x) is not a PRG.

By the way, there is a theorem saying h(x) = (f(x), b(x)) is a PRG, if f is an SOP and b is a
hard-core bit for f .

6

CS 138b Computer Algorithm
Final Exam

Ling Li, ling@cs.caltech.edu
March 16, 2001

F.6 Yet another random walk

(a) Let P be the set of all primes p less than n. Then any ` (1 ≤ ` < n) can be written as

` =
∏
p∈P

pm(p).

By the fundamental theory of arithmetic (unique factorization), to get L = `, the random
walk must stay m(p) time steps at p for every p ∈ P . Thus the probability of L = ` is∏

p∈P

p− 1
pm(p)+1

=
∏
p∈P

1
pm(p)

∏
p∈P

p− 1
p

=
1
`
B(n).

(b) Step (i) consists of a random walk and multiplying of pm(p) over all primes p less than n.
As proved in Homework 16.4(d), the random walk takes expected time 1 + H(n − 1). Since
H(n− 1) < 1 + log(n− 1) < 2 log n for n ≥ 2, the time of this part is just O(log n).

To show that step (i) can be done in expected time polynomial in log n, we need to show that
deciding whether a number p is a prime or not could be done in expected time polynomial in
log n. This can be implied by the fact that PRIMES is in co-RP ∩RP. PRIMES ∈ co-RP
means there exists a randomized algorithm, running in expected polynomial time (in log n,
which is the number of bits in p), which for p is a prime, announces p is a prime, and for p is
not a prime, announces with probability at least 1

2 that p is not a prime. And symmetrically,
PRIMES ∈ RP means there exists a randomized algorithm, running in expected polynomial
time (in log n), which for p is not a prime, announces p is not a prime, and for p is a prime,
announces with probability at least 1

2 that p is a prime. Thus we can run both randomized
algorithms simultaneously, to decide whether p is a prime.‡ Thus the time for step (i) is really
polynomial in log n.

However, this can’t be implied only from that PRIMES is in co-RP ∩NP, since we need
both algorithms together to decide the primality of p.

(c) Assume that there is a positive c such that B(n) ≥ 1
c lgn . The algorithm reaches step (iii) iff

L ≤ n− 1. From (a), the probability is

n−1∑
`=1

1
`
B(n) = H(n− 1)B(n) ≥ H(n− 1)

c lg n
. (1)

For n ≥ 3, we have (n− 1)2 > n. Thus H(n− 1) > log(n− 1) > 1
2 log n, and that probability

for n ≥ 3 is at least

1
2 log n
c lg n

=
1

2c lg e
.

‡For a prime p, the first algorithm will say p is a prime, and the second algorithm may say p is a not a prime. For
p is not a prime, the first algorithm may say p is a prime, and the second algorithm will say p is not a prime. Thus
we can not tell with full confidence that p is a prime or not. However, p can be decided if the first algorithm say it is
not a prime, or the second algorithm say it is a prime. Then if thinking in the expected time, we can use those two
algorithms to decide the primality of p with full confidence.

7

CS 138b Computer Algorithm
Final Exam

Ling Li, ling@cs.caltech.edu
March 16, 2001

(d) When the algorithm reaches step (iii), L can be any of 1, 2, . . . , n− 1. For a specific ` in the
range 1 ≤ ` < n, the probability that ` is generated in step (i) and then passes step (iii) is

1
`
B(n)

`

n− 1
=
B(n)
n− 1

. (2)

Hence the probability that the algorithm goes on to step (iv) rather than returning to (i) is

n−1∑
`=1

B(n)
n− 1

= B(n).

The probability that the algorithm can reach (iii) is H(n− 1)B(n) (see (1)).Thus the condi-
tional probability that the algorithm goes on to (iv) given it has reached (iii) is

B(n)
H(n− 1)B(n)

=
1

H(n− 1)
.

(e) From (b), step (i) can be implemented in expected time polynomial in log n. Denote that
time by T . From (c), the algorithm reaches (iii) with probability at least 1

2c lg e . Then the
expected time to reach (iii) is at most

T + T

(
1− 1

2c lg e

)
+ T

(
1− 1

2c lg e

)2

+ · · · = T

1−
(

1− 1
2c lg e

) = (2c lg e)T.

From (d), when the algorithm reaches step (iii), it goes on to step (iv) with probability 1
H(n−1) .

By similar computation, we get the expected time for the algorithm to reach step (iv), that
is, to terminate, is at most (since H(n− 1) < 2 log n for n ≥ 2)

2c lg eH(n− 1)T ≤ (4c lg e log n)T,

which is also a polynomial in log n.

When the algorithm halts and outputs `, ` must be in the range 1 ≤ ` < n, and the probability
of ` only depends on the last run of the algorithm. From (2), the probability that ` is generated
in step (i) and then passes step (iii) (and then is outputted) is B(n)

n−1 , which is independent of
`. Thus the algorithm outputs an integer uniformly between 1 and n− 1.

We can also calculate the probability of each integer produced as the conditional probability
of ` being generated and outputted given the algorithm halts, which is

B(n)
n−1∑n−1

l=1
B(n)
n−1

=
1

n− 1
.

8

