Solutions to Problem Set 4.

Problem 1.
The feasible polytope S is the set of all = satisfying Az = b and z > 0. Now consider any
x1, T9 € S and z = azry + (1 — @)ze with 0 < a < 1. Obviously, z > 0 and

Az = Alaz1 + (1 — a)zg) = adz1 + (1 —a)Azeo = ab+ (1 —a)b=1>

so z € S, and thus S is convex.

Problem 2.

Note that the definition given in class seems to give an immediate answer: since the row rank of
A is less than m, the number of constraints, then so is the column rank of A, so there cannot be
m linearly independent columns of A, and point b) in the definition of a basic feasible point is
never satisfied. However technically, the definition was only given for the case when the row rank
of A is full. A more general definition would be that the submatrix B has to be invertible. But
B € R™*™ so it cannot be invertible for A with rank < m. Note that there can nevertheless
exist extremal points in this case.

Problem 3.
Assume z* is primal feasible and y*, dual feasible with ¢fz* = bT'y*. Suppose z is primal feasible
with ¢’z < ¢’z*. Then by the theorem proved in class, ¢!z < bTy*, which contradicts weak
duality. Hence ¢z > ¢T'z* for all z, and thus z* is primal optimal.

Suppose y is dual feasible with b”y > b’y*. Then by the same theorem, b’y > ¢’ z*, which
again contradicts weak duality. Hence b’y < bTy* Vy, and thus y* is dual optimal.

Problem 4.

Assume that the primal problem has an unbounded objective, but the dual problem has feasible
points. Let y be a dual feasible point. Then by weak duality, by < ¢!z for all feasible points of
the primal problem. This implies 4"y < min{c’z : z is primal feasible }. But this contradicts
the assumption that the primal problem is unbounded. Therefore, the dual problem does not
have any feasible points.

Now assume the dual problem is unbounded, but the primal problem has feasible points.
Let = be one such point. By weak duality, b’y < ¢!’z for all dual feasible points y, which
implies max{b”y : y is dual feasible } < c’'z. But this contradicts the assumption that the dual
problem is unbounded. Hence the primal problem cannot have any feasible points.

Problem 5.

Let the column of the constraint matrix A corresponding to the variable z; be A;. The column
of A corresponding to z; will then be —A;. Thus the columns corresponding to z and z} are
linearly dependent, and any basis that includes both of these columns will be singular. Hence
no feasible solution can include both z} and z!' as basic variables.



Problem 6.

To convert the problem to standard form, introduce slack variables z5 and xg. The standard
form will then be

min —5x1 — 7xo — 123 + x4
s.t. 2¢1 4+ 3xo + 223 + 4 + x5 = 38
3x1 +2x9 +4x3 — x4 + 26 = 55

Z1,X2,T3,T4,T5,T6 Z 0
Solve this using simplex method:

1st iteration

B = {.1'5,.’1;6} N: {$1,$2,$3,IL‘4}
CB - (O 0) CN - (_57 —=7,-12, ]-)
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B _<0 1) N‘<324—1>

2V = (38,55)7, y = (0,0)7, sy = (-5,-7,-12,1)T

T3 is the entering variable, and ¢t = (2,4)7. The ratios are {38/2, 55/4}, so ¢ is the
leaving variable.

2nd iteration

B ={zs,z3}, N = {z1,72, 76,24}
Cg = (O _12) CN - ( 5,—7,0, 1)

. 1 —1/2 2 30 1
B :<0 1/4) N:<321—1>

wg) =(21/2,55/4)", y = (0,-3)T, sy = (4,-1,3,-2)7

T4 is the entering variable, and ¢ = (3/2,—1/4)T. The ratios are {21/3}, so z5 is the
leaving variable.

3rd iteration

B = {.’L'4,.’L'3} N = {Il,.’EQ,.’L’G,-’LB}
cp = (1,-12), ey = (=5,-7,0,0)

1 [ 2/3 —1/3 (2301
B _<1/6 1/6) N‘<3210>
2D = (7,31/2)T, y = (—4/3,—7/3)T, sn = (14/3,5/3,7/3,4/3)"

This is the optimal basis and the optimal value of the objective is c5zp = —179.



Problem 7.

We are going to prove that if z, is the leaving variable and z, is the entering variable, then the
reduced cost of the variable z;, becomes positive and thus it cannot re-enter the basis in the
following iteration.

Start with ATy + s = ¢, which can be partitioned into BTy + sgp = ¢g and NTy + sy =
= cy. From the first expression we get y = B~1(cg — sp), while looking at the gth row of
the second expression we get NqT Y+ sg = Aqu + 84 = ¢4. Now substitute the above relation
for y: AT(B™T(cp — sB)) + sq = ¢4 But all the elements in sp remain zero, except for the
one correspoding to the leaving variable p; also note that AqTB T = (B_lAq)T = ¢T. Thus the
previous equality yields ¢t cp — tpsp +5q = cq. Therefore —1,s,+ s, = ¢4 — tTcp. The right-hand
side of this expression remains constant in the pricing process; in the left-hand side, s, becomes
zero after the entering variable x, enters the basis. Hence we conclude that —t,s, = s4, or
Sp = —Sq/tp. Since s; < 0 and t, > 0, it follows that s, > 0, and so the variable z, cannot
re-enter the basis in the following iteration.

Problem 8.

Let the final Phase I basis be zp = {z1,...,Z,}. Then the nonbasic variables are zy =
= {Zmt1s+++Tn,01,...,am}. Now ¢k = (0,...,0) and ¢} = (0,...,0,1,...,1). The reduced
costs then are sk = ¢k — cEB"IN = ¢k = (0,...,0,1,...,1), i.e., the reduced costs of all the

original variables are 0 and the reduced costs of all the artificial variables are 1.



