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Let * = (z*,2%)” be any local minimizer. f(z) = (x3 — 2x2)% + 2} gives

2(xy — 2x9) + 423
Vf(x) = < —14($1—22$2) ! )7

Vif(z) = (2+_142x§ —84>‘

Thus the first- and second-order derivatives of f are continuous in R?. From the first-order
necessary condition for a local minimizer, we have

- (M) (1)
Thus 2% = 2} = 0, i.e., 2* = (0,0)”. Now
Vife = Vi) = ( 2y )
is positive semi-definite, since
eIV for = 2(zy — 219)? (1)
is non-negative for any = = (21, 22)" € R2. Though V2f(z*) is not positive definite, since (1)
is 0 when z = (2,1)”, we can prove that z* = (0, O)T is the only local minimizer, and is also a

global minimizer: f(z) = (z1 — 2x2)% + 21 > 0 = f(z*), with equality iff 27 = 225 and z; = 0,
which is just = 2*. Thus z* = (0,0)” is the only (global) minimizer.

Rosenbrock function. f(x) = 100(z2 — 22)? + (1 — x1)%. Let 2* = (2%,23)" be any local
minimizer.

B —400(z2 — 23)21 — 2(1 — 21)
Vi) = < 200(22 — 43) > |

9 B 120022 — 40079 +2  —400x;
Vi) = < —400a, 200 )

The first- and second-order derivatives of f are continuous in R?. From the first-order necessary
condition for a local minimizer, V f(z*) = 0 gives 7 = 25 = 1. Now

s wnpan [ 802 —400
v~’c"‘_vf(5”)_<—400 200>
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is positive definite, since for x = (z1, .TUQ)T € R? and z # 0,
2TV o = 223 4 200221 — 2)2 > 0.

Thus by the second-order sufficient condition for local minimizer, we know x* is a strict local
minimizer. And above discussion also shows z* is the only local minimizer.

Note that @ is not necessary symmetric. Let Q = %(Q + Q7). From QT = %(QT +Q) = Q
and 27 Qz = %(xTQ:UquTQTx) = %(xTQx+ (7 Qx)T) = 2T Qx, we know Q is symmetric and
positive definite. Thus Q! exists.

f(z) = 227Qx — ¢Tz. Thus
Vf(z)=Qu—c, Vf=Q. (2)
From the start point zg, Newton’s method gives
py = —(Vf0)'Vfo=-Q ' (Quo—¢) = —zo + Qe

Hence z1 =z +pd = Q'c. Tt is easy to verify that Vf(z;) = 0 and V2f(21) = Q is positive
definite. Thus 2 is a strict local minimizer of f. (The minimum of f is —%CTQ_IC.)

When applying Newton’s method to a function f, we first approximate f by the first 3 items
of its Taylor series. Then we use the first-order necessary condition to get descent direction py.
So it is not surprising that when f itself is quadratic, Newton’s method would find the local
minimum in one step.

Define g(a) = f(x) + apy), where f is defined in Problem 1.3. From
Vi (ak + apy) = Qag + apy) — ¢ = (Quy, — ¢") + aQpy = V fi + aQpy,
we get g'(a) = pLV f(zy, + apr) = pi V fx + apl Qpy.. Solving ¢’(ay) = 0 gives

pEV fi
pFQpy

3)
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Since py is a descent direction, we have p; # 0 and p{v fr < 0. Since Q is positive definite,
we also have pf Qpy > 0. Thus oy, > 0. From ¢”(a) = pl Qpx > 0, we know

ap = argmin g(e) = argmin f(zy, + aps).
Thus we proved that the line search should use the step length given by (3).

Line search. Starting from zj, the deepest descent direction is (see (2))
pr = =V f(zx) = ¢ — Quy .
Then from (3), we can get aj and then calculate

Thyl = Tk + QpPy -

Here we use ¢ = (6,3)7, 29 = (—4,5)T, and
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Ql:(o 1>’ Q2:<0 10)’ Q3:<0 100>
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as examples with condition numbers x € {1,10,100}. The theoretical bound constants com-

(k-1 2
C\k+1
and the estimated constants C, are
k110 100
C |0 0.66942 0.96079
C. | 0 0.25128 0.038135
The iteration of xj, is shown in Figure 1.
(a) k=1 (b) k=10
o line search with k = 100

(¢) k=100

Figure 1: Line search with x = 1,10,100. The small circles with numbers are x;’s, and the dashed
lines give the descent direction pi’s. Those ellipses are contours of the object function.



