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Introduction to Machine Learning

Apple, Orange, or Strawberry?

?

apple orange strawberry

how can machine learn to classify?
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Introduction to Machine Learning

Supervised Machine Learning

Parent

?

(picture, category) pairs

?

Kid’s good
decision
functionbrain
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possibilities

Truth f (x) + noise e(x)

?

examples (picture xn, category yn)

?

learning good
decision
function

h(x) ≈ f (x)

algorithm

'
&

$
%
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6

learning model {hα(x)}

challenge:
see only {(xn, yn)} without knowing f (x) or e(x)

?
=⇒ generalize to unseen (x , y) w.r.t. f (x)
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Introduction to Machine Learning

Machine Learning Research

What can the machines learn? (application)
concrete:
computer vision, architecture optimization, information retrieval,
bio-informatics, computational finance, · · ·
abstract setups:
classification, regression, · · ·

How can the machines learn? (algorithm)
faster
better generalization

Why can the machines learn? (theory)
paradigms:
statistical learning, reinforcement learning, · · ·
generalization guarantees

new opportunities keep coming
from new applications/setups
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The Ordinal Ranking Setup

Which Age-Group?

2

infant (1) child (2) teen (3) adult (4)

rank: a finite ordered set of labels Y = {1, 2, · · · , K}
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The Ordinal Ranking Setup

Properties of Ordinal Ranking (1/2)

ranks represent order information

infant (1)

<

child (2)

<

teen (3)

<

adult (4)

general multiclass classification cannot
properly use order information
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The Ordinal Ranking Setup

Hot or Not?

http://www.hotornot.com

rank: natural representation of human preferences
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The Ordinal Ranking Setup

Properties of Ordinal Ranking (2/2)

ranks do not carry numerical information

rating 9 not 2.25 times “hotter” than rating 4

actual metric hidden

infant
(ages 1–3)

child
(ages 4–12)

teen
(ages 13–19)

adult
(ages 20–)

general metric regression deteriorates
without correct numerical information
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The Ordinal Ranking Setup

How Much Did You Like These Movies?

http://www.netflix.com

goal: use “movies you’ve rated” to automatically
predict your preferences (ranks) on future movies
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The Ordinal Ranking Setup

Ordinal Ranking Setup

Given
N examples (input xn, rank yn) ∈ X × Y

age-group: X = encoding(human pictures), Y = {1, · · · , 4}

hotornot: X = encoding(human pictures), Y = {1, · · · , 10}

netflix: X = encoding(movies), Y = {1, · · · , 5}

Goal
an ordinal ranker (decision function) r(x) that “closely predicts”
the ranks y associated with some unseen inputs x

ordinal ranking: a hot and important research problem
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The Ordinal Ranking Setup

Ongoing Heat: Netflix Million Dollar Prize (since 10/2006)

Given
each user u (480,189 users) rates Nu (from tens to thousands)
movies x—a total of

∑
u Nu = 100,480,507 examples

Goal
personalized ordinal rankers ru(x) evaluated on 2,817,131
“unseen” queries (u, x)

the first team being 10% better than
original Netflix system gets a million USD
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The Ordinal Ranking Setup

Cost of Wrong Prediction

ranks carry no numerical information: how to say “better”?
artificially quantify the cost of being wrong

e.g. loss of customer royalty when the system
says but you feel

cost vector c of example (x , y , c):
c[k ] = cost when predicting (x , y) as rank k
e.g. for ( Sweet Home Alabama , ), a proper cost
is c = (1, 0, 2, 10, 15)

closely predict: small test cost
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The Ordinal Ranking Setup

Ordinal Cost Vectors

For an ordinal example (x , y , c), the cost vector c should
follow the rank y : c[y ] = 0; c[k ] ≥ 0
respect the ordinal information: V-shaped (ordinal) or even
convex (strongly ordinal)

1: infant 2: child 3: teenager 4: adult

C y,
 k

V-shaped: pay more when
predicting further away

1: infant 2: child 3: teenager 4: adult

C y,
 k

convex: pay increasingly
more when further away

c[k ] = Jy 6= kK c[k ] =
∣∣y − k

∣∣ c[k ] = (y − k)2

classification: absolute: squared (Netflix):

ordinal
strongly strongly
ordinal ordinal

(1, 0, 1, 1, 1) (1, 0, 1, 2, 3) (1, 0, 1, 4, 9)
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The Ordinal Ranking Setup

Our Contributions

a theoretical and algorithmic foundation of ordinal ranking, which ...

provides a methodology for designing new ordinal
ranking algorithms with any ordinal cost effortlessly
takes many existing ordinal ranking algorithms as
special cases
introduces new theoretical guarantee on the
generalization performance of ordinal rankers
leads to superior experimental results

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure: truth; traditional algorithm; our algorithm
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Reduction from Ordinal Ranking to Binary Classification

Threshold Model

If we can first get an ideal score s(x) of a movie x , how can we
construct the discrete r(x) from an analog s(x)?

-x x
θ1

d d d
θ2

t tt t
θ3

??

1 2 3 4 ordinal ranker r(x)

score function s(x)

1 2 3 4 target rank y

quantize s(x) by some ordered threshold θ

commonly used in previous work:
threshold perceptrons (PRank, Crammer and Singer, 2002)
threshold hyperplanes (SVOR, Chu and Keerthi, 2005)

threshold ensembles (ORBoost, Lin and Li, 2006)

threshold model: r(x) = min {k : s(x) < θk}
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Reduction from Ordinal Ranking to Binary Classification

Key of Reduction: Associated Binary Queries

getting the rank using a
threshold model

1 is s(x) > θ1? Yes
2 is s(x) > θ2? No
3 is s(x) > θ3? No
4 is s(x) > θ4? No

generally, how do we query the rank of
a movie x?

1 is movie x better than rank 1? Yes
2 is movie x better than rank 2? No
3 is movie x better than rank 3? No
4 is movie x better than rank 4? No

associated binary queries:
is movie x better than rank k?
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Reduction from Ordinal Ranking to Binary Classification

More on Associated Binary Queries

say, the machine uses g(x , k) to answer the query
“is movie x better than rank k?”

e.g. threshold model g(x , k) = sign(s(x)− θk )

K − 1 binary classification problems w.r.t. each k

-x x d d d t tt t ??

1 2 3 4 rg(x)

s(x)
1 2 3 4 y

N N Y Y Y Y YYY YYθ1

(z)1

θ1 g(x , 1)

N N N N N Y YYY YY

(z)2

θ2 g(x , 2)

N N N N N N NNN YY

(z)3

θ3 g(x , 3)

let
(
(x , k), (z)k

)
be binary examples

(x , k): extended input w.r.t. k -th query
(z)k : desired binary answer Y/N

If g(x , k) = (z)k for all k ,
we can compute rg(x) from g(x , k) s.t. rg(x) = y .
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Reduction from Ordinal Ranking to Binary Classification

Computing Ranks from Associated Binary Queries

when g(x , k) answers “is movie x better than rank k?”

Consider
(
g(x , 1), g(x , 2), · · · , g(x , K−1)

)
,

consistent predictions: (Y, Y, N, N, N, N, N)
extracting the rank:

minimum index searching: rg(x) = min {k : g(x , k) = N}
counting: rg(x) = 1 +

∑
k Jg(x , k) = YK

two approaches equivalent for consistent predictions
noisy/inconsistent predictions? e.g. (Y, N, Y, Y, N, N, Y)

counting: simpler to analyze and robust to noise
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Reduction from Ordinal Ranking to Binary Classification

The Counting Approach

Say y = 5, i.e.,
(
(z)1, (z)2, · · · , (z)7

)
= (Y, Y, Y, Y, N, N, N)

if g1(x , k) reports (Y, Y, N, N, N, N, N)
g1(x , k) made 2 errors
rg1(x) = 3; absolute cost = 2

absolute cost = # of binary classification errors

if g2(x , k) reports (Y, N, Y, Y, N, N, Y)
g2(x , k) made 2 errors
rg2(x) = 5; absolute cost = 0

absolute cost ≤ # of binary classification errors

If (z)k = desired answer & rg computed by counting,∣∣y − rg(x)
∣∣ ≤ K−1∑

k=1

q
(z)k 6= g(x , k)

y
.
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Reduction from Ordinal Ranking to Binary Classification

Binary Classification Error v.s. Ordinal Ranking Cost

Say y = 5, i.e.,
(
(z)1, (z)2, · · · , (z)7

)
= (Y, Y, Y, Y, N, N, N)

if g1(x , k) reports (Y, Y, N, N, N, N, N)
g1(x , k) made 2 errors
rg1(x) = 3; squared cost = 4

if g3(x , k) reports consistent predictions (Y, N, N, N, N, N, N)
g3(x , k) made 3 errors
rg3(x) = 2; squared cost = 9

now 1 error can introduce up to 5 more in cost
—how to take this into account?
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Reduction from Ordinal Ranking to Binary Classification

Importance of Associated Binary Queries

(z)k Y Y Y Y N N N
g1(x , k) Y Y N N N N N c

[
rg1(x)

]
= c[3] = 4

g3(x , k) Y N N N N N N c
[
rg3(x)

]
= c[2] = 9

(w)k 7 5 3 1 1 3 5

(w)k ≡
∣∣∣c[k + 1]− c[k ]

∣∣∣: the importance of
(
(x , k), (z)k

)
per-example cost bound (Li and Lin, 2007; Lin, 2008):
for consistent predictions or strongly ordinal costs

c
[
rg(x)

]
≤

K−1∑
k=1

(w)k
q
(z)k 6= g(x , k)

y

accurate binary predictions =⇒ correct ranks

Hsuan-Tien Lin (Caltech) From Ordinal Ranking to Binary Classification 03/27/2008 24 / 40



Reduction from Ordinal Ranking to Binary Classification

The Reduction Framework (1/2)

1 transform ordinal examples (xn, yn, cn) to
weighted binary examples

(
(xn, k), (zn)k , (wn)k

)
2 apply your favorite algorithm and get one big

joint binary classifier g(x , k)

3 for each new input x , predict its rank using
rg(x) = 1 +

∑
k Jg(x , k) = YK

the reduction framework:
systematic & easy to implement
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Reduction from Ordinal Ranking to Binary Classification

The Reduction Framework (2/2)

performance guarantee:
accurate binary predictions =⇒ correct ranks
wide applicability:
works with any ordinal c & any binary classification algorithm
simplicity:
mild computation overheads with O(NK ) binary examples
up-to-date:
allows new improvements in binary classification to be
immediately inherited by ordinal ranking
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Reduction from Ordinal Ranking to Binary Classification

Theoretical Guarantees of Reduction (1/3)

is reduction a practical approach? YES!
error transformation theorem (Li and Lin, 2007)

For consistent predictions or strongly ordinal costs,
if g makes test error ∆ in the induced binary problem,
then rg pays test cost at most ∆ in ordinal ranking.

a one-step extension of the per-example cost bound
conditions: general and minor
performance guarantee in the absolute sense:

accuracy in binary classification =⇒ correctness in ordinal ranking

Is reduction really optimal?
—what if the induced binary problem is “too hard”?
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Reduction from Ordinal Ranking to Binary Classification

Theoretical Guarantees of Reduction (2/3)

is reduction an optimal approach? YES!
regret transformation theorem (Lin, 2008)

For a general class of ordinal costs,
if g is ε-close to the optimal binary classifier g∗,
then rg is ε-close to the optimal ordinal ranker r∗.

error guarantee in the relative setting:

regardless of the absolute hardness of the induced binary prob.,
optimality in binary classification =⇒ optimality in ordinal ranking

reduction does not introduce additional hardness

“reduction to binary” sufficient, but necessary?
i.e., is reduction a principled approach?
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Reduction from Ordinal Ranking to Binary Classification

Theoretical Guarantees of Reduction (3/3)

is reduction a principled approach? YES!
equivalence theorem (Lin, 2008)

For a general class of ordinal costs,
ordinal ranking is learnable by a learning model
if and only if binary classification is learnable by the
associated learning model.

a surprising equivalence:

ordinal ranking is as easy as binary classification

reduction to binary classification:
practical, optimal, and principled
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Reduction from Ordinal Ranking to Binary Classification Algorithmic Usefulness of Reduction

Unifying Existing Algorithms

ordinal ranking = reduction + cost + binary classification

ordinal ranking cost binary classification algorithm
PRank absolute modified perceptron rule

(Crammer and Singer, 2002)

kernel ranking classification modified hard-margin SVM
(Rajaram et al., 2003)

SVOR-EXP classification modified soft-margin SVMSVOR-IMC absolute
(Chu and Keerthi, 2005)

ORBoost-LR classification modified AdaBoostORBoost-All absolute
(Lin and Li, 2006)

correctness proof significantly simplified (PRank)
algorithmic structure revealed (SVOR, ORBoost)

variants of existing algorithms can be
designed quickly by tweaking reduction
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Reduction from Ordinal Ranking to Binary Classification Algorithmic Usefulness of Reduction

Designing New Algorithms Effortlessly

ordinal ranking = reduction + cost + binary classification

ordinal ranking cost binary classification algorithm
Reduction-C4.5 absolute standard C4.5 decision tree
Reduction-SVM absolute standard soft-margin SVM

SVOR (modified SVM) v.s. Reduction-SVM (standard SVM):
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SVOR
RED−SVM

advantages of core binary classification algorithm
inherited in the new ordinal ranking one
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Outline

1 Introduction to Machine Learning

2 The Ordinal Ranking Setup

3 Reduction from Ordinal Ranking to Binary Classification
Algorithmic Usefulness of Reduction
Theoretical Usefulness of Reduction
Experimental Performance of Reduction

4 Conclusion

Hsuan-Tien Lin (Caltech) From Ordinal Ranking to Binary Classification 03/27/2008 33 / 40



Reduction from Ordinal Ranking to Binary Classification Theoretical Usefulness of Reduction

Recall: Threshold Model

“bad” ordinal ranker: predictions close to thresholds
—small noise changes prediction

-xx
θ1

dd d
θ2

tt tt
θ3
??

1 2 3 4 r(x)

s(x)

“good” ordinal ranker: clear separation using thresholds

-x x
θ1

d dd
θ2

tttt
θ3

??
1 2 3 4 r(x)

s(x)

next: good ordinal ranker =⇒ small expected test cost
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Reduction from Ordinal Ranking to Binary Classification Theoretical Usefulness of Reduction

Proving New Generalization Theorems

Ordinal Ranking (Li and Lin, 2007)

For SVOR or Reduction-SVM,
with probability > 1− δ,

expected test abs. cost of r

≤ 1
N

N∑
n=1

K−1∑
k=1

q
ρ̄
(
r(xn), yn, k

)
≤Φ

y

︸ ︷︷ ︸
“goodness” in training

+ O
(

poly
(

K , log N√
N

, 1
Φ ,

√
log 1

δ

))
︸ ︷︷ ︸

deviation that decreases
with more examples

Bi. Class. (Bartlett and Shawe-Taylor, 1998)

For SVM,
with probability > 1− δ,

expected test err. of g

≤ 1
N

N∑
n=1

q
ρ̄
(
g(xn), yn

)
≤ Φ

y

︸ ︷︷ ︸
“goodness” in training

+ O
(

poly
(

log N√
N

, 1
Φ ,

√
log 1

δ

))
︸ ︷︷ ︸

deviation that decreases
with more examples

new ordinal ranking theorem
= reduction + any cost + bin. thm. + math derivation
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Reduction from Ordinal Ranking to Binary Classification Experimental Performance of Reduction

Reduction-C4.5 v.s. SVOR
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SVOR (Gauss)
RED−C4.5 C4.5: a (too) simple

binary classifier
—decision trees
SVOR:
state-of-the-art
ordinal ranking
algorithm

even simple Reduction-C4.5
sometimes beats SVOR
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Reduction from Ordinal Ranking to Binary Classification Experimental Performance of Reduction

Reduction-SVM v.s. SVOR
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SVOR (Gauss)
RED−SVM (Perc.) SVM: one of the most

powerful binary
classification
algorithm
SVOR:
state-of-the-art
ordinal ranking
algorithm extended
from modified SVM

Reduction-SVM without modification
often better than SVOR and faster
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Conclusion

Conclusion

reduction framework:
practical, optimal, and principled
algorithmic reduction:

take existing ones as special cases
design new and better ones easily

theoretic reduction:
new generalization guarantee of ordinal rankers

superior experimental results:
better performance and faster training time

reduction keeps ordinal ranking up-to-date
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