Infinite Ensemble Learning with Support Vector Machines

Hsuan-Tien Lin

in collaboration with Ling Li Learning Systems Group, Caltech

Second Symposium on Vision and Learning, 2005/09/21

Outline

- Setup of our Learning Problem
- 2 Motivation of Infinite Ensemble Learning
- Connecting SVM and Ensemble Learning
- SVM-Based Framework of Infinite Ensemble Learning
- Examples of the Framework
- Experimental Comparison
- Conclusion and Discussion

Setup of our Learning Problem

- binary classification problem:
 - does this image represent an apple?

- features of the image: a vector $x \in \mathcal{X} \subseteq \mathbb{R}^D$.
 - e.g.: $(x)_1$ can describe the shape, $(x)_2$ can describe the color, etc.
 - difference to the features in vision: a vector of properties, not a "set of interest points."
- label (whether the image is an apple): $y \in \{+1, -1\}$.
- learning problem: give many images and their labels (training examples) $\{(x_i,y_i)\}_{i=1}^N$, find a classifier $g(x):\mathcal{X}\to\{+1,-1\}$ that predicts **unseen** images well.
- hypotheses (classifiers): functions from $\mathcal{X} \to \{+1, -1\}$.

Motivation of Infinite Ensemble Learning

$$g(x): \mathcal{X} \rightarrow \{+1, -1\}$$

- ensemble learning: popular paradigm.
 - ensemble: weighted vote of a committee of hypotheses. $g(x) = \text{sign}(\sum w_t h_t(x)), w_t \ge 0.$
 - traditional ensemble learning: infinite size committee with finite number of nonzero weights.
 - is finiteness restriction and/or regularization?
 - how to handle infinite number of nonzero weights?
- SVM (large-margin hyperplane): also popular.
 - hyperplane: a weighted combination of features.
 - SVM: **infinite** dimensional hyperplane through kernels. $g(x) = \text{sign}(\sum w_d \phi_d(x) + b)$.
 - can we use SVM for infinite ensemble learning?

Illustration of SVM

$$g(x) = \operatorname{sign}(\sum_{d=1}^{\infty} w_d \phi_d(x) + b)$$
 implicitly computed via duality
$$\phi_1(x) \qquad \qquad \psi_2(x) \qquad$$

SVM

- implicit computation with $\mathcal{K}(\mathbf{x}, \mathbf{x}') = \sum_{d=1}^{\infty} \phi_d(\mathbf{x}) \phi_d(\mathbf{x}').$
- optimal solution (w, b) represented by the dual variables λ_i .

Property of SVM

$$g(x) = \operatorname{sign}(\sum_{d=1}^{\infty} w_d \phi_d(x) + b) = \operatorname{sign}(\sum_{i=1}^{N} \lambda_i y_i \mathcal{K}(x_i, x) + b)$$

- optimal hyperplane: represented through duality.
- key for handling infinity: kernel tricks $\mathcal{K}(x, x') = \sum_{d=1}^{\infty} \phi_d(x) \phi_d(x')$.
- quadratic programming of a margin-related criteria.
- goal: (infinite dimensional) large-margin hyperplane.

$$\min_{w,b} \frac{1}{2} \|w\|_2^2 + C \sum_{i=1}^N \xi_i, \text{ s.t. } y_i \left(\sum_{d=1}^\infty w_d \phi_d(x_i) + b \right) \ge 1 - \xi_i, \xi_i \ge 0.$$

• regularization: controlled with the trade-off parameter C.

Illustration of AdaBoost

$$g(x) = sign\left(\sum_{t=1}^{T} w_t h_t(x)\right)$$

 $h_t \in \mathcal{H} \hspace{1cm} \textit{W}_t \geq 0$ iteratively selected iteratively assigned

AdaBoost

- most successful ensemble learning algorithm.
- boosts up the performance of each individual h_t.
- emphasizes
 difficult examples
 by u_t and finds
 (h_t, w_t) iteratively.

Property of AdaBoost

$$g(x) = \operatorname{sign}\left(\sum_{t=1}^{T} w_t h_t(x)\right)$$

iterative coordinate descent of a margin-related criteria.

$$\min \sum_{i=1}^N \exp\left(-\rho_i\right), \text{ s.t. } \rho_i = y_i \left(\sum_{t=1}^\infty w_t h_t(x_i)\right), w_t \geq 0.$$

goal: asymptotically, large-margin ensemble.

$$\min_{w,h} \|w\|_1$$
, s.t. $y_i \left(\sum_{t=1}^{\infty} w_t h_t(x_i) \right) \ge 1$, $w_t \ge 0$.

- optimal ensemble: approximated by finite one.
- key for good approximation: sparsity
 some optimal ensemble has many zero weights.
- regularization: finite approximation.

Connection between SVM and AdaBoost

$$\phi_d(\mathbf{x}) \Leftrightarrow h_t(\mathbf{x})$$

SVM AdaBoost
$$G(x) = \sum_k w_k \phi_k(x) + b$$
 $G(x) = \sum_k w_k h_k(x)$ $w_k \ge 0$

hard-goal

$$\min \|w\|_{p}, \text{ s.t. } y_{i}G(x_{i}) \geq 1$$

 $p = 2$ $p = 1$

optimization

quadratic programming iterative coordinate descent

key for infinity

kernel trick

sparsity

regularization

soft-margin trade-off

finite approximation

Challenge

designing an infinite ensemble learning algorithm

- traditional ensemble learning: iterative and cannot directly be generalized.
- another approach: embedding infinite number of hypotheses in SVM kernel, i.e., $\mathcal{K}(x,x') = \sum_{t=1}^{\infty} h_t(x)h_t(x')$.
- then, SVM classifier: $g(x) = \text{sign}(\sum_{t=1}^{\infty} w_t h_t(x) + b)$.
- does the kernel exist?
- how to ensure $w_t \ge 0$?
- our main contribution: a framework that conquers the challenge.

Embedding Hypotheses into the Kernel

Definition

The kernel that embodies $\mathcal{H} = \{h_{\alpha} : \alpha \in \mathcal{C}\}$ is defined as

$$\mathcal{K}_{\mathcal{H},r}(\mathbf{x},\mathbf{x}') = \int_{\mathcal{C}} \phi_{\mathbf{x}}(\alpha) \phi_{\mathbf{x}'}(\alpha) \, d\alpha,$$

where C is a measure space, $\phi_{\mathbf{X}}(\alpha) = r(\alpha)h_{\alpha}(\mathbf{X})$, and $r: C \to \mathbb{R}^+$ is chosen such that the integral always exists.

- integral instead of sum: works even for uncountable \mathcal{H} .
- $\mathcal{K}_{\mathcal{H},r}(\mathbf{x},\mathbf{x}')$: an inner product for $\phi_{\mathbf{x}}$ and $\phi_{\mathbf{x}'}$ in $\mathcal{F} = \mathcal{L}_2(\mathcal{C})$.
- the classifier: $g(x) = \text{sign}(\int_{\mathcal{C}} w(\alpha) r(\alpha) h_{\alpha}(x) d\alpha + b)$.

Negation Completeness and Constant Hypotheses

$$g(x) = \operatorname{sign}\left(\int_{\mathcal{C}} w(\alpha) r(\alpha) h_{\alpha}(x) d\alpha + b\right)$$

- not an ensemble classifier yet.
- $w(\alpha) \ge 0$?
 - hard to handle: possibly uncountable constraints.
 - simple with negation completeness assumption on \mathcal{H} .
 - negation completeness: $h \in \mathcal{H}$ if and only if $(-h) \in \mathcal{H}$.
 - for any w, exists nonnegative \tilde{w} that produces same g.
- What is b?
 - equivalently, the weight on a constant hypothesis.
 - ullet another assumption: ${\cal H}$ contains a constant hypothesis.
- both assumptions: mild in practice.
- g(x) is equivalent to an ensemble classifier.

Framework of Infinite Ensemble Learning

Algorithm

- Consider a hypothesis set \mathcal{H} (negation complete and contains a constant hypothesis).
- **2** Construct a kernel $\mathcal{K}_{\mathcal{H},r}$ with proper $r(\cdot)$.
- Properly choose other SVM parameters.
- Train SVM with $\mathcal{K}_{\mathcal{H},r}$ and $\{(x_i,y_i)\}_{i=1}^N$ to obtain λ_i and b.
- **o** Output $g(x) = \text{sign}\left(\sum_{i=1}^{N} y_i \lambda_i \mathcal{K}_{\mathcal{H}}(x_i, x) + b\right)$.
 - easy: SVM routines.
 - hard: kernel construction.
 - shall inherit the profound properties of SVM.

Decision Stump

- decision stump: $s_{q,d,\alpha}(x) = q \cdot sign((x)_d \alpha)$.
- simplicity: popular for ensemble learning (e.g., Viola and Jones)

(a) Decision Process

(b) Decision Boundary

Figure: Illustration of the decision stump $s_{+1,2,\alpha}(x)$

Stump Kernel

- consider the set of decision stumps $S = \{s_{q,d,\alpha_d} : q \in \{+1,-1\}, d \in \{1,\dots,D\}, \alpha_d \in [L_d,R_d]\}.$
- when $\mathcal{X} \subseteq [L_1, R_1] \times [L_2, R_2] \times \cdots \times [L_D, R_D]$, \mathcal{S} is negation complete, and contains a constant hypothesis.

Definition

The stump kernel $\mathcal{K}_{\mathcal{S}}$ is defined for \mathcal{S} with $r(q, d, \alpha_d) = \frac{1}{2}$.

$$\mathcal{K}_{\mathcal{S}}(x,x') = \Delta_{\mathcal{S}} - \sum_{d=1}^{D} \left| (x)_d - (x')_d \right| = \Delta_{\mathcal{S}} - \|x - x'\|_1,$$

where $\Delta_{\mathcal{S}} = \frac{1}{2} \sum_{d=1}^{D} (R_d - L_d)$ is a constant.

Property of Stump Kernel

- simple to compute: the constant Δ_S can even be dropped $\tilde{K}(x,x') = -\|x-x'\|_1$.
- infinite power: under mild assumptions, SVM with $C = \infty$ can perfectly classify training examples with stump kernel.
 - the popular Gaussian kernel $\exp(-\gamma ||x x'||_2^2)$ also.
- fast parameter selection: scaling the stump kernel is equivalent to scaling soft-margin parameter *C*.
 - Gaussian kernel depends on a good (γ, C) pair.
 - stump kernel only needs good C: roughly ten times faster.
- feature space explanation for ℓ_1 -norm similarity.
- well suited in some specific applications: cancer prediction with gene expressions.

Perceptron

- perceptron: $p_{\theta,\alpha}(x) = \text{sign}(\theta^T x \alpha)$.
- not easy for ensemble learning: hard to design good algorithm.

(a) Decision Process

(b) Decision Boundary

Figure: Illustration of the perceptron $p_{\theta,\alpha}(x)$

Perceptron Kernel

- consider the set of perceptrons $\mathcal{P} = \{p_{\theta,\alpha} : \theta \in \mathbb{R}^D, \|\theta\|_2 = 1, \alpha \in [-R, R]\}.$
- when \mathcal{X} is within a ball of radius R centered at the origin, \mathcal{P} is negation complete, and contains a constant hypothesis.

Definition

The perceptron kernel is $\mathcal{K}_{\mathcal{P}}$ with $r(\theta, \alpha) = r_{\mathcal{P}}$,

$$\mathcal{K}_{\mathcal{P}}(\mathbf{x}, \mathbf{x}') = \Delta_{\mathcal{P}} - \|\mathbf{x} - \mathbf{x}'\|_{2},$$

where $r_{\mathcal{P}}$ and $\Delta_{\mathcal{P}}$ are constants.

Property of Perceptron Kernel

- similar properties to the stump kernel.
- also simple to compute.
- infinite power: equivalent to a $D-\infty-1$ neural network.
- fast parameter selection: also shown in (Fleuret and Sahbi, ICCV 2003 workshop, called triangular kernel) without feature space explanation.

Histogram Intersection Kernel

- introduced for scene recognition (Odone et al., IEEE TIP, 2005).
- assume $(x)_d$: counts in the histogram (how many pixels are red?) an integer between [0, size of image].
- histogram intersection kernel: $\mathcal{K}(x, x') = \sum_{d=1}^{D} \min((x)_d, (x')_d).$
- generalized with difficult math when $(x)_d$ is not an integer (Boughorbel et al., ICIP, 2005), similar tasks.
- let $\hat{\mathbf{s}}(\mathbf{x}) = (\mathbf{s}(\mathbf{x}) + 1)/2$: HIK can be constructed easily from the framework.
- furthermore, HIK equivalent to stump kernel.
- insights on why HI (stump) kernel works well for the task?

Other Kernels

- Laplacian kernel: $\mathcal{K}(\mathbf{x}, \mathbf{x}') = \exp(-\gamma \|\mathbf{x} \mathbf{x}'\|_1)$.
 - provably embodies infinite number of decision trees.
- generalized Laplacian: $\mathcal{K}(\mathbf{x}, \mathbf{x}') = \exp\left(-\gamma \sum |(\mathbf{x})_d^a (\mathbf{x}')_d^a|\right)$.
 - can be similarly constructed with a slightly different *r* function.
 - standard kernel for histogram-based image classification with SVM (Chappelle et al., IEEE TNN, 1999).
 - insights on why it should work well?
- exponential kernel: $\mathcal{K}(\mathbf{x}, \mathbf{x}') = \exp(-\gamma ||\mathbf{x} \mathbf{x}'||_2)$.
 - provably embodies infinite number of decision trees of perceptrons.

Comparison between SVM and AdaBoost

Results

- fair comparison between AdaBoost and SVM.
- SVM is usually best – benefits to go to infinity.
- sparsity
 (finiteness) is a
 restriction.

Comparison of SVM Kernels

Results

- SVM-Perc very similar to SVM-Gauss.
- SVM-Stump comparable to, but sometimes a bit worse than others.

Conclusion and Discussion

- constructed: general framework for infinite ensemble learning.
- infinite ensemble learning could be better existing AdaBoost-Stump applications may switch.
- derived new and meaningful kernels.
 - stump kernel: succeeded in specific applications.
 - perceptron kernel: similar to Gaussian, faster in parameter selection.
- gave novel interpretation to existing kernels.
 - histogram intersection kernel: equivalent to stump kernel.
 - Laplacian kernel: ensemble of decision trees.
- possible thoughts for vision
 - would fast parameter selection be important for some problems?
 - any vision applications in which those kernel models are reasonable?
 - do the novel interpretations give any insights?
 - any domain knowledge that can be brought into kernel construction?

