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Setup of our Learning Problem

Setup of our Learning Problem

@ binary classification problem:

does this image represent an apple? o

@ features of the image: a vector x € X C RP,
@ e.g.: (x)1 can describe the shape, (x), can describe the color, etc.
e difference to the features in vision: a vector of properties , not a
“set of interest points.”

@ label (whether the image is an apple): y € {+1,—1}.

@ learning problem: give many images and their labels (training
examples) {(xi,yi)}i'\'zl, find a classifier g(x) : X — {+1, —1} that
predicts unseen images well.

@ hypotheses (classifiers): functions from X — {41, —1}.
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Motivation of Infinite Ensemble Learning

Motivation of Infinite Ensemble Learning

g(x): X — {+1,-1}

@ ensemble learning: popular paradigm.
e ensemble: weighted vote of a committee of hypotheses.
g(x) = sign(>_ wihi(x)) ,w; > 0.
e traditional ensemble learning: infinite size committee with finite
number of nonzero weights.
o is finiteness restriction and/or regularization ?
e how to handle infinite number of nonzero weights?

@ SVM (large-margin hyperplane): also popular.
e hyperplane: a weighted combination of features.
e SVM: infinite dimensional hyperplane through kernels.

9(x) = sign(3>_ Wada(x) +b).
e can we use SVM for infinite ensemble learning ?
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Connecting SVM and Ensemble Learning
lllustration of SVM

g(x) = sign(d> g2, Wa¢d(x) +b)

@ implicit
b Wy computation with
implicitly computed via duality IC(X, X’) —
$1(x) Y de1 d(X)pa(x').

@ optimal solution
(w,b) represented

$2(x) by the dual
{(xi, yi) Ly ONN,H variables ;. |
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Connecting SVM and Ensemble Learning
Property of SVM

g(x) = sign(d g2, Wa¢d(x) + b) = sign (ZiN:l AYiK(Xi, X) + b) J

@ optimal hyperplane: represented through duality.

@ key for handling infinity: kernel tricks K(x,x") = > 471 ¢a(X)da (X").
@ gquadratic programming of a margin-related criteria.

@ goal: (infinite dimensional) large-margin hyperplane.

1 N %)
QV“}QEHWH%JFCZ&, sty (ZWd¢d(Xi)+b> >1-§,6§>0.

i=1 d=1

@ regularization: controlled with the trade-off parameter C.
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Connecting SVM and Ensemble Learning
lllustration of AdaBoost

g(x) = sign( 7y wihe(x))
@ most successful

hi € H wi >0 ensemble learning
iteratively selected iteratively assigned algorithm.

@ boosts up the
performance of
each individual h.

@ emphasizes
difficult examples
by u; and finds
(ht, wy) iteratively.

{(xi, yi) L —
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Connecting SVM and Ensemble Learning
Property of AdaBoost

g(x) = sign( Ty wihi(x)) |

@ iterative coordinate descent of a margin-related criteria.
N 00
min Y “exp(—pi), st pi =V (Zwtht(xi)> Wi > 0.
i=1 t=1
@ goal: asymptotically, large-margin ensemble.
o
min ||w s.t.y; Wi he (X >1, w > 0.
mir lwll1, Yi <; the( |)> > 1w >

@ optimal ensemble: approximated by finite one.
@ key for good approximation: sparsity

— some optimal ensemble has many zero weights.
@ regularization: finite approximation.
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Connecting SVM and Ensemble Learning

Connection between SVM and AdaBoost

¢d(x) < he(x) J

SVM AdaBoost

G(x) = 2o Wk dw (x) +b G(x) = 2k Wkhk (x)
Wi > 0

hard-goal
min ||w||p, s.t. yiG(xj) > 1
p=2 p=1
optimization
guadratic programming iterative coordinate descent
key for infinity
kernel trick sparsity
regularization
soft-margin trade-off finite approximation
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SVM-Based Framework of Infinite Ensemble Learning
Challenge

designing an infinite ensemble learning algorithm J

@ traditional ensemble learning: iterative and cannot directly be
generalized.

@ another approach: embedding infinite number of hypotheses in
SVM kernel, i.e., K(x,x") = >"2; hi(x)hy(x’).

then, SVM classifier: g(x) = sign(>_;2; w¢he(x) + b).

does the kernel exist?

how to ensure w; > 0?

our main contribution: a framework that conquers the
challenge .
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SVM-Based Framework of Infinite Ensemble Learning

Embedding Hypotheses into the Kernel

Definition
The kernel that embodies H = {h,: a € C} is defined as

K (%, X) = /c dx(0)dx (a) da,

where C is a measure space, ¢x(a) = r(a)h,(x), and r: C — RT is
chosen such that the integral always exists.

@ integral instead of sum: works even for uncountable H.
@ Ky r(X,x’): an inner product for ¢x and ¢y in F = L5(C).
e the classifier: g(x) = sign( [, w(a)r(a)ha(x)da +b) .
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SVM-Based Framework of Infinite Ensemble Learning

Negation Completeness and Constant Hypotheses

g(x) = sign (/Cw(a)r(a)ha(x)da + b)

@ not an ensemble classifier yet.

e w(a)>07?
e hard to handle: possibly uncountable constraints.
e simple with negation completeness assumption on H.
@ negation completeness: h € H if and only if (—h) € H.
e for any w, exists nonnegative w that produces same g.

@ What is b?

e equivalently, the weight on a constant hypothesis.
e another assumption: H contains a constant hypothesis.

@ both assumptions: mild in practice.
@ g(x) is equivalent to an ensemble classifier.
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SVM-Based Framework of Infinite Ensemble Learning

Framework of Infinite Ensemble Learning

Algorithm

© Consider a hypothesis set H (negation complete and contains a
constant hypothesis).

@ Construct a kernel K3 with proper r(-).
© Properly choose other SVM parameters.
@ Train SVM with Ky, and {(x;,yi)}IL, to obtain ); and b.

@ Outputg(x) = sign(ZiN:1 YiAiKCx (X5, X) + b).

@ easy. SVM routines.
@ hard: kernel construction.
@ shall inherit the profound properties of SVM.
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Examples of the Framework
Decision Stump

@ decision stump: Sq 4 (X) = q - sign((x)q — ).
@ simplicity: popular for ensemble learning (e.g., Viola and Jones)

(a) Decision Process (b) Decision Boundary,

Figure: lllustration of the decision stump s;1 2 o(X)
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Examples of the Framework
Stump Kernel

@ consider the set of decision stumps
S ={sqdas:d€{+1,-1},d €{1,...,D},aq € [Lg,Ra]}.
@ when X C [L1,R1] x [L2,R2] x - -+ x [Lp, Rp], S is negation
complete, and contains a constant hypothesis.

The stump kernel s is defined for S with r(q,d, aq) = %

D
Ks(xx") = Bs = > [(¥)a — (x)a] = As =[x =X[l1,
d=1

where As = 330 (Rg — Lq) is a constant.
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Examples of the Framework
Property of Stump Kernel

@ simple to compute: the constant As can even be dropped
R(x,x") = —[x —x'|l1.
@ infinite power: under mild assumptions, SVM with C = oo can
perfectly classify training examples with stump kernel.
e the popular Gaussian kernel exp(—v||x — x’||3) also.

@ fast parameter selection: scaling the stump kernel is equivalent to
scaling soft-margin parameter C.

e Gaussian kernel depends on a good (v, C) pair.
e stump kernel only needs good C: roughly ten times faster.

@ feature space explanation for £,-norm similarity.

@ well suited in some specific applications:
cancer prediction with gene expressions.
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Examples of the Framework
Perceptron

@ perceptron: pyo(X) = sign(6Tx — «).
@ not easy for ensemble learning: hard to design good algorithm.

(x)2 "X =«
A
_9> " Poalx) =+1
,,,,,, R “(X)1
(a) Decision Process (b) Decision Boundary,

Figure: lllustration of the perceptron pg . (X)
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Examples of the Framework
Perceptron Kernel

@ consider the set of perceptrons
P ={poa: 0 €RP, ||0]2=1,a € [-R,R]}.

@ when X is within a ball of radius R centered at the origin, P is
negation complete, and contains a constant hypothesis.

Definition
The perceptron kernel is Kp with r(0, &) = rp,

Kp(x,X') = Ap — x — X[l

where rp and Ap are constants.
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Examples of the Framework
Property of Perceptron Kernel

@ similar properties to the stump kernel.
@ also simple to compute.
@ infinite power: equivalent to a D-oo-1 neural network.

@ fast parameter selection: also shown in (Fleuret and Sahbi, ICCV
2003 workshop, called triangular kernel) without feature space
explanation.
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Examples of the Framework

Histogram Intersection Kernel

@ introduced for scene recognition (Odone et al., IEEE TIP, 2005).

@ assume (X)q: counts in the histogram (how many pixels are red?)
— an integer between [0, size of image].

@ histogram intersection kernel:
K(x,x') = Xg—g min((x)g, (x)a)-

@ generalized with difficult math when (x)q is not an integer
(Boughorbel et al., ICIP, 2005), similar tasks.

@ let §(x) = (s(x) + 1)/2: HIK can be constructed easily from the
framework.

@ furthermore, HIK equivalent to stump kernel.
@ insights on why HI (stump) kernel works well for the task?
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Examples of the Framework
Other Kernels

@ Laplacian kernel: K(x,x") = exp (—7||x — x'[|1)-
e provably embodies infinite number of decision trees.
@ generalized Laplacian: K(x,x") = exp (—y > [(x)§ — (x")3]).
@ can be similarly constructed with a slightly different r function.
e standard kernel for histogram-based image classification with SVM

(Chappelle et al., IEEE TNN, 1999).
@ insights on why it should work well?

@ exponential kernel: K(x,x’) = exp (=[x — X’||2).
e provably embodies infinite number of decision trees of perceptrons.
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Experimental Comparison
Comparison between SVM and AdaBoost

I SVM-Stump
[ AdaBoost-Stump(100)
I AdaBoost-Stump(1000)

@ fair comparison
between AdaBoost
and SVM.

error (%)

° .
° @ SVM is usually
tw twn th thn ri rin aus  bre ger hea ion pim  son vot i
best — benefits to
TSV Perc ! ] go to Inflnlty.

30 | [__] AdaBoost—Perc(100)

| | I AosBoost-perciioon) @ sparsity
g (finiteness) is a
s restriction

aus bre ger hea ion pim son
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Experimental Comparison

Comparison of SVM Kernels

35— T T T
I SVM-Stump Results
[_1SVM-Perc
I sVM-Gauss

sl | @ SVM-Perc very
similar to
=1 . ] SVM-Gauss.
ol @ SVM-Stump
< = ) comparable to, but
® sl I T sometimes a bit
worse than others.

nnllllkk Il

tw twn th thn ri rin aus bre ger hea ion pim son vot
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Conclusion and Discussion

Conclusion and Discussion

@ constructed: general framework for infinite ensemble learning.
@ infinite ensemble learning could be better — existing
AdaBoost-Stump applications may switch.
@ derived new and meaningful kernels.
e stump kernel: succeeded in specific applications.
@ perceptron kernel: similar to Gaussian, faster in parameter
selection.
@ gave novel interpretation to existing kernels.
e histogram intersection kernel: equivalent to stump kernel.
o Laplacian kernel: ensemble of decision trees.
@ possible thoughts for vision
e would fast parameter selection be important for some problems?
@ any vision applications in which those kernel models are
reasonable?
o do the novel interpretations give any insights?
e any domain knowledge that can be brought into kernel
construction?
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