
Infinite Ensemble Learning with
Support Vector Machines

Hsuan-Tien Lin

in collaboration with Ling Li
Learning Systems Group, Caltech

Second Symposium on Vision and Learning, 2005/09/21

H.-T. Lin (Learning Systems Group) Infinite Ensemble Learning with SVMs 2005/09/21 1 / 24



Outline

1 Setup of our Learning Problem

2 Motivation of Infinite Ensemble Learning

3 Connecting SVM and Ensemble Learning

4 SVM-Based Framework of Infinite Ensemble Learning

5 Examples of the Framework

6 Experimental Comparison

7 Conclusion and Discussion

H.-T. Lin (Learning Systems Group) Infinite Ensemble Learning with SVMs 2005/09/21 2 / 24



Setup of our Learning Problem

Setup of our Learning Problem

binary classification problem:

does this image represent an apple?

features of the image: a vector x ∈ X ⊆ RD.
e.g.: (x)1 can describe the shape, (x)2 can describe the color, etc.
difference to the features in vision: a vector of properties , not a
“set of interest points.”

label (whether the image is an apple): y ∈ {+1,−1}.
learning problem: give many images and their labels (training
examples) {(xi , yi)}N

i=1, find a classifier g(x) : X → {+1,−1} that
predicts unseen images well.

hypotheses (classifiers): functions from X → {+1,−1}.
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Motivation of Infinite Ensemble Learning

Motivation of Infinite Ensemble Learning

g(x) : X → {+1,−1}

ensemble learning: popular paradigm.
ensemble: weighted vote of a committee of hypotheses.
g(x) = sign(

∑
wtht(x)) , wt ≥ 0.

traditional ensemble learning: infinite size committee with finite
number of nonzero weights.
is finiteness restriction and/or regularization ?
how to handle infinite number of nonzero weights?

SVM (large-margin hyperplane): also popular.
hyperplane: a weighted combination of features.
SVM: infinite dimensional hyperplane through kernels.
g(x) = sign(

∑
wdφd (x) + b) .

can we use SVM for infinite ensemble learning ?
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Connecting SVM and Ensemble Learning

Illustration of SVM

{(xi , yi)}N
i=1

φd

implicitly computed

φ1(x)

φ2(x)

· · ·

φ∞(x)

wd

via duality

w1

w2

· · ·

w∞

(λi)
N
i=1

g(x) = sign(
∑∞

d=1 wdφd(x) + b) SVM
implicit
computation with
K(x , x ′) =∑∞

d=1 φd(x)φd(x ′).

optimal solution
(w , b) represented
by the dual
variables λi .
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Connecting SVM and Ensemble Learning

Property of SVM

g(x) = sign(
∑∞

d=1 wdφd(x) + b) = sign
(∑N

i=1 λiyiK(xi , x) + b
)

optimal hyperplane: represented through duality.

key for handling infinity: kernel tricks K(x , x ′) =
∑∞

d=1 φd(x)φd(x ′).

quadratic programming of a margin-related criteria.

goal: (infinite dimensional) large-margin hyperplane.

min
w ,b

1
2
‖w‖2

2 + C
N∑

i=1

ξi , s.t. yi

( ∞∑
d=1

wdφd(xi) + b

)
≥ 1− ξi , ξi ≥ 0.

regularization: controlled with the trade-off parameter C.
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Connecting SVM and Ensemble Learning

Illustration of AdaBoost

{(xi , yi)}N
i=1

ht ∈ H
iteratively selected

h1(x)

h2(x)

· · ·

hT (x)

wt ≥ 0
iteratively assigned

w1

w2

· · ·

wT

u1(i)

u2(i)

· · ·

g(x) = sign
(∑T

t=1 wtht(x)
)

AdaBoost

most successful
ensemble learning
algorithm.

boosts up the
performance of
each individual ht .

emphasizes
difficult examples
by ut and finds
(ht , wt) iteratively.
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Connecting SVM and Ensemble Learning

Property of AdaBoost

g(x) = sign
(∑T

t=1 wtht(x)
)

iterative coordinate descent of a margin-related criteria.

min
N∑

i=1

exp (−ρi) , s.t. ρi = yi

( ∞∑
t=1

wtht(xi)

)
, wt ≥ 0.

goal: asymptotically, large-margin ensemble.

min
w ,h

‖w‖1, s.t. yi

( ∞∑
t=1

wtht(xi)

)
≥ 1, wt ≥ 0.

optimal ensemble: approximated by finite one.
key for good approximation: sparsity
– some optimal ensemble has many zero weights.
regularization: finite approximation.
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Connecting SVM and Ensemble Learning

Connection between SVM and AdaBoost

φd(x) ⇔ ht(x)

SVM AdaBoost
G(x) =

∑
k wkφk (x) + b G(x) =

∑
k wkhk (x)

wk ≥ 0
hard-goal

min ‖w‖p, s.t. yiG(xi) ≥ 1
p = 2 p = 1

optimization
quadratic programming iterative coordinate descent

key for infinity
kernel trick sparsity

regularization
soft-margin trade-off finite approximation
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SVM-Based Framework of Infinite Ensemble Learning

Challenge

designing an infinite ensemble learning algorithm

traditional ensemble learning: iterative and cannot directly be
generalized.

another approach: embedding infinite number of hypotheses in
SVM kernel, i.e., K(x , x ′) =

∑∞
t=1 ht(x)ht(x ′).

then, SVM classifier: g(x) = sign(
∑∞

t=1 wtht(x) + b).

does the kernel exist?

how to ensure wt ≥ 0?

our main contribution: a framework that conquers the
challenge .
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SVM-Based Framework of Infinite Ensemble Learning

Embedding Hypotheses into the Kernel

Definition

The kernel that embodies H = {hα : α ∈ C} is defined as

KH,r (x , x ′) =

∫
C
φx(α)φx ′(α) dα,

where C is a measure space, φx(α) = r(α)hα(x), and r : C → R+ is
chosen such that the integral always exists.

integral instead of sum: works even for uncountable H.

KH,r (x , x ′): an inner product for φx and φx ′ in F = L2(C).
the classifier: g(x) = sign

(∫
C w(α)r(α)hα(x) dα + b

)
.
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SVM-Based Framework of Infinite Ensemble Learning

Negation Completeness and Constant Hypotheses

g(x) = sign
(∫

C
w(α)r(α)hα(x) dα + b

)
not an ensemble classifier yet.
w(α) ≥ 0?

hard to handle: possibly uncountable constraints.
simple with negation completeness assumption on H.
negation completeness: h ∈ H if and only if (−h) ∈ H.
for any w , exists nonnegative w̃ that produces same g.

What is b?
equivalently, the weight on a constant hypothesis.
another assumption: H contains a constant hypothesis.

both assumptions: mild in practice.

g(x) is equivalent to an ensemble classifier.
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SVM-Based Framework of Infinite Ensemble Learning

Framework of Infinite Ensemble Learning

Algorithm

1 Consider a hypothesis set H (negation complete and contains a
constant hypothesis).

2 Construct a kernel KH,r with proper r(·).
3 Properly choose other SVM parameters.
4 Train SVM with KH,r and {(xi , yi)}N

i=1 to obtain λi and b.

5 Output g(x) = sign
(∑N

i=1 yiλiKH(xi , x) + b
)

.

easy: SVM routines.

hard: kernel construction.

shall inherit the profound properties of SVM.
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Examples of the Framework

Decision Stump

decision stump: sq,d ,α(x) = q · sign((x)d − α).
simplicity: popular for ensemble learning (e.g., Viola and Jones)
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s+1,2,α(x) = +1

(x)2 = α

(x)2

(x)1

(b) Decision Boundary

Figure: Illustration of the decision stump s+1,2,α(x)
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Examples of the Framework

Stump Kernel

consider the set of decision stumps
S =

{
sq,d ,αd : q ∈ {+1,−1} , d ∈ {1, . . . , D} , αd ∈ [Ld , Rd ]

}
.

when X ⊆ [L1, R1]× [L2, R2]× · · · × [LD, RD], S is negation
complete, and contains a constant hypothesis.

Definition

The stump kernel KS is defined for S with r(q, d , αd) = 1
2 .

KS(x , x ′) = ∆S −
D∑

d=1

∣∣(x)d − (x ′)d
∣∣ = ∆S − ‖x − x ′‖1,

where ∆S = 1
2

∑D
d=1(Rd − Ld) is a constant.
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Examples of the Framework

Property of Stump Kernel

simple to compute: the constant ∆S can even be dropped
K̃ (x , x ′) = −‖x − x ′‖1.
infinite power: under mild assumptions, SVM with C = ∞ can
perfectly classify training examples with stump kernel.

the popular Gaussian kernel exp(−γ‖x − x ′‖2
2) also.

fast parameter selection: scaling the stump kernel is equivalent to
scaling soft-margin parameter C.

Gaussian kernel depends on a good (γ, C) pair.
stump kernel only needs good C: roughly ten times faster.

feature space explanation for `1-norm similarity.

well suited in some specific applications:
cancer prediction with gene expressions.
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Examples of the Framework

Perceptron

perceptron: pθ,α(x) = sign
(
θT x − α

)
.

not easy for ensemble learning: hard to design good algorithm.

�
�

�
�θT x ≥ α?

�
�

�	
Y

@
@

@R
N�

�
�
�+1

�
�

�
�−1

(a) Decision Process

-

6

�
�

�
�

�
�

�
�

pθ,α(x) = +1

θT x = α(x)2

(x)1

@I

−θ

(b) Decision Boundary

Figure: Illustration of the perceptron pθ,α(x)
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Examples of the Framework

Perceptron Kernel

consider the set of perceptrons
P =

{
pθ,α : θ ∈ RD, ‖θ‖2 = 1, α ∈ [−R, R]

}
.

when X is within a ball of radius R centered at the origin, P is
negation complete, and contains a constant hypothesis.

Definition

The perceptron kernel is KP with r(θ, α) = rP ,

KP(x , x ′) = ∆P − ‖x − x ′‖2,

where rP and ∆P are constants.
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Examples of the Framework

Property of Perceptron Kernel

similar properties to the stump kernel.

also simple to compute.

infinite power: equivalent to a D-∞-1 neural network.

fast parameter selection: also shown in (Fleuret and Sahbi, ICCV
2003 workshop, called triangular kernel) without feature space
explanation.
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Examples of the Framework

Histogram Intersection Kernel

introduced for scene recognition (Odone et al., IEEE TIP, 2005).

assume (x)d : counts in the histogram (how many pixels are red?)
– an integer between [0, size of image].

histogram intersection kernel:
K(x , x ′) =

∑D
d=1 min((x)d , (x ′)d).

generalized with difficult math when (x)d is not an integer
(Boughorbel et al., ICIP, 2005), similar tasks.

let ŝ(x) = (s(x) + 1)/2: HIK can be constructed easily from the
framework.

furthermore, HIK equivalent to stump kernel.

insights on why HI (stump) kernel works well for the task?
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Examples of the Framework

Other Kernels

Laplacian kernel: K(x , x ′) = exp (−γ‖x − x ′‖1).
provably embodies infinite number of decision trees.

generalized Laplacian: K(x , x ′) = exp
(
−γ
∑
|(x)a

d − (x ′)a
d |
)
.

can be similarly constructed with a slightly different r function.
standard kernel for histogram-based image classification with SVM
(Chappelle et al., IEEE TNN, 1999).
insights on why it should work well?

exponential kernel: K(x , x ′) = exp (−γ‖x − x ′‖2).
provably embodies infinite number of decision trees of perceptrons.
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Experimental Comparison

Comparison between SVM and AdaBoost
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Results

fair comparison
between AdaBoost
and SVM.

SVM is usually
best – benefits to
go to infinity.

sparsity
(finiteness) is a
restriction .

H.-T. Lin (Learning Systems Group) Infinite Ensemble Learning with SVMs 2005/09/21 22 / 24



Experimental Comparison

Comparison of SVM Kernels
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Results

SVM-Perc very
similar to
SVM-Gauss.

SVM-Stump
comparable to, but
sometimes a bit
worse than others.
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Conclusion and Discussion

Conclusion and Discussion

constructed: general framework for infinite ensemble learning.
infinite ensemble learning could be better – existing
AdaBoost-Stump applications may switch.
derived new and meaningful kernels.

stump kernel: succeeded in specific applications.
perceptron kernel: similar to Gaussian, faster in parameter
selection.

gave novel interpretation to existing kernels.
histogram intersection kernel: equivalent to stump kernel.
Laplacian kernel: ensemble of decision trees.

possible thoughts for vision
would fast parameter selection be important for some problems?
any vision applications in which those kernel models are
reasonable?
do the novel interpretations give any insights?
any domain knowledge that can be brought into kernel
construction?
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