
Analysis of SAGE Results with Combined

Learning Techniques

Hsuan-Tien Lin and Ling Li

Learning Systems Group, California Institute of Technology, USA
htlin@caltech.edu, ling@caltech.edu

Abstract. Serial analysis of gene expression (SAGE) experiments could
provide us the expression level of thousands of genes in a biological
sample. However, the number of available samples is relatively small.
Such undersampled problem needs to be carefully analyzed from a ma-
chine learning perspective. In this paper, we combine several state-of-the-
art techniques for classification, feature selection, and error estimation,
and evaluate the performance of the combined techniques on the SAGE
dataset. Our results show that a novel algorithm, support vector ma-
chine with the stump kernel, performs well on the SAGE dataset both
for building an accurate classifier, and for selecting relevant features.

1 Introduction

Serial analysis of gene expression (SAGE) experiments could provide us an enor-
mous amount of information on the expression level of different genes in some
cell populations. The expression level is evaluated by counting the occurrences
of the SAGE tags that can identify an unique transcript [1].

Although each sample (also called library, pattern, or example) contains a
large number of features, each of which corresponds to a SAGE tag, the num-
ber of available samples is relatively small. In the dataset provided for the
ECML/PKDD 2005 Discovery Challenge, there are 27679 features in each of
the 90 samples, of which 59 are cancerous and 31 are normal. Gamberoni and
Storari [1] formulated a binary classification problem in which each sample is
labeled with its cancerous status, and the goal was to see whether some learning
algorithms can build a meaningful and accurate classifier for this problem.

For such an undersampled problem, the goal of deducing a meaningful and
accurate classifier is difficult to achieve. It is shown that even if the 90 samples are
labeled randomly, some very weak classifiers, say, hyperplanes in R

27679, can still
almost always separate the samples perfectly [2]. Thus, a classifier that exactly
fits all 90 given samples is not guaranteed to generalize well. Such phenomena,
called overfitting by the machine learning community, are especially troublesome
when there are so few samples available.

In addition, with such a large number of features, there is usually irrelevant
information in some of them. Then, learning algorithms may erroneously use the
irrelevant features to construct classifiers, which also leads to poor generalization
performance.

P. Berka and B. Crémilleux (Eds.): ECML/PKDD 2005 Discovery Challenge, pp. 102–113, 2005.

Several principles and techniques may help to avoid overfitting. First, the
Occam’s razor [3], when applied to learning, prefers simpler classifiers over more
complex ones. The rationale here is that a set of simpler classifiers is less likely
to overfit the given samples, and thus may have smaller discrepancy between
the training and generalization errors. Techniques based on this principle, such
as regularization and structural risk minimization [2], usually lead to better
generalization performance. All classification algorithms we use in this study
have some degree of regularization.

Secondly, some techniques may help to focus on relevant information. For
example, feature selection techniques try to filter out unimportant features and
leave the processing of the useful features to later learning stage [4]. Feature
selection on the SAGE dataset is useful for providing the relevance of each feature
(SAGE tag) when predicting the desired label (status). Thus, we shall adapt and
compare some feature selection techniques in this study.

Finally, error estimation techniques, such as the leave-one-out cross-validation
and the v-fold cross-validation [5], can help in estimating the generalization per-
formance as well as in selecting good parameters. However, any single estimator
suffers the risk of being fitted if we compare too many algorithms or classifiers
based on the estimator. Thus, we carefully use different estimations in this study
to verify our findings, in order to draw a robust conclusion.

In this paper, we combine several techniques for classification, feature se-
lection, and error estimation, and design a systematic approach to analyze un-
dersampled problems. We take the SAGE dataset as a case study, and focus on
deducing meaningful results for the associated binary classification problem. The
sections are organized as follows. Section 2 describes the classification algorithms
used in this study, and Section 3 introduces the feature ranking algorithms for
feature selection. Then in Section 4 we present the experimental setting as well
as our findings. Finally, we conclude in Section 5.

2 Classification Algorithms

We choose several classification algorithms that have been used for similar anal-
ysis in literature. These algorithms have different views on how the relationship
between a sample and its label should be modeled. Somehow their success shares
a similar nature: generating a classifier that has a reasonable complexity through
some degree of regularization. Each algorithm has its advantages and disadvan-
tages for the SAGE dataset, which are discussed individually in the subsections.

2.1 Adaptive Boosting with the Decision Stumps

The adaptive boosting (AdaBoost) [6] is perhaps the most popular and successful
ensemble classification algorithm. For a given integer T and a weak hypothesis
set H, AdaBoost iteratively picks T weak hypotheses ht ∈ H and weights wt ≥ 0

103

to construct an ensemble classifier

g(x) = sign

(

T
∑

t=1

wtht(x)

)

.

The ensemble classifier g aggregates the predictions of each individual ht by a
weighted voting. The aggregation allows AdaBoost to achieve good performance
even with a simple H. Tan and Gilbert [7] used AdaBoost with the decision trees
for cancer classification with gene expressions, and found that AdaBoost can
sometimes improve the generalization performance of decision trees dramatically.

Another widely used weak hypothesis set contains the decision stumps [8].
The decision stump sq,d,α(x) = q · sign((x)d − α) works on (x)d, the d-th feature
of a sample x, and classifies x according to q ∈ {−1, +1} and the threshold α.
The simplicity of decision stumps makes it possible to implement AdaBoost with
the decision stumps (AdaBoost-Stump) efficiently.

Ben-Dor et al. [9] found that AdaBoost-Stump is sometimes superior to other
algorithms for their tissue classification problems. If AdaBoost-Stump is applied
to the SAGE dataset, each ht in the obtained classifier can be thought as a
thresholding rule for the associated SAGE tag, and the aggregation by wt is a
soft-version of the OR logic. After T iterations, AdaBoost-Stump automatically
selects no more than T rules of SAGE tags that are worth investigating. That is,
AdaBoost-Stump performs automatic feature selection and outputs an explain-
able classifier. These two properties make AdaBoost-Stump a favorable choice
for gene expression datasets such as SAGE.

It was observed that AdaBoost-Stump can achieve good performances with
some ad hoc values of T such as 100 or 1000 [9]. We shall present both settings
in our results.

2.2 Support Vector Machine with the Linear Kernel

The support vector machine (SVM) is a classification algorithm which finds a
separating hyperplane for labeled samples (xi, yi) ∈ R

D×{−1, +1}with maximal
margins [2]. That is, each sample would have a large distance to the constructed
hyperplane. The obtained classifier is of the form

g(x) = sign(〈w, Φ(x)〉 + b)

after solving a quadratic optimization problem for the values of w and b.
SVM is able to perform well in nonlinear classification problems. It transforms

the sample x to a high-dimensional space with some mapping Φ, and constructs
a hyperplane classifier there. In fact, the explicit form of Φ does not need to be
used, and all necessary computation can be embedded into a special function
called the kernel: K(x, x′) = 〈Φ(x), Φ(x′)〉. In the most basic form, Φ(x) = x

and K, called the linear kernel, is just a basic inner product. Then, the classifier
constructed by SVM is a simple hyperplane in R

D

g(x) = sign

(

D
∑

d=1

wd(x)d + b

)

(1)

104

1. Consider a training set D = {(xi, yi)}
N

i=1
.

2. Conduct a 5-fold cross-validation on Z with the soft-margin SVM and the linear
kernel, with C ∈ {2−37, 2−35, · · · , 2−17}. Obtain C∗ as the one with the lowest
cross-validation error.

3. Apply the soft-margin SVM with the linear kernel and C∗, and output the obtained
classifier.

Fig. 1. Steps of the SVM-Linear algorithm

In our study, we use the soft-margin SVM which has a parameter C that con-
trols the trade-off between the magnitude of margin and the amount of margin
violations allowed. Gamberoni and Storari [1] analyzed the SAGE dataset with
the soft-margin SVM and the linear kernel using the default parameter (C = 1
with feature scaling). They found that this setting leads to good leave-one-out
performance for the task. However, it is not clear whether such parameter would
always be a good choice. Hsu and Lin [10] suggested selecting the value of C that
achieves the lowest cross-validation error on the training set. In this study we
adapt this procedure to our SVM with the linear kernel, denoted SVM-Linear,
as shown in Fig. 1. Note that the parameter C is searched within some small
values because we do not perform explicit feature scaling on the dataset.

As shown in (1), SVM-Linear outputs a hyperplane classifier in R
D. Thus,

it is possible to analyze the weight wd of each feature (SAGE tag) for building
the hyperplane. When |wd| is larger, the prediction of the hyperplane is more
sensitive to the value of feature d, which implies that tag d is more important.

2.3 Support Vector Machine with the Gaussian Kernel

The linear kernel K(x, x′) = 〈x, x′〉 is not the only kernel that can be used
with SVM. One of the most popular kernels is the Gaussian kernel, which is of
the form K(x, x′) = exp(−γ‖x − x′‖2

2). The Gaussian kernel implicitly defines
a mapping Φ such that Φ(x) is a vector in an infinite dimensional space. Such
property makes it possible to classify the labeled samples in a nonlinear and
powerful manner. SVM with the Gaussian kernel was shown to have superior
performance in some analysis of microarray gene expression data [11].

The Gaussian kernel has an additional parameter γ, which, similar to the
parameter C, also needs to be decided carefully. It is known that the linear
kernel can be thought as a special case of the Gaussian kernel under thorough
parameter selection [12]. Thus, the Gaussian kernel is often considered to be
more useful than the linear kernel [10]. However, the additional parameter γ

makes the parameter selection step more time-consuming. We shall also adapt
the procedure of Hsu and Lin [10] for SVM with the Gaussian kernel (SVM-
Gauss), in which the best parameter pair (C∗, γ∗) would be searched with C ∈
{2−5, 2−3, · · · , 215} and γ ∈ {2−34, 2−32, · · · , 2−16}.

Another drawback of SVM-Gauss is that it is difficult to interpret the ob-
tained classifier. The classifier embeds an infinite number of interactions between

105

features in the kernel, and those interactions cannot be directly accessed or eval-
uated.

2.4 Support Vector Machine with the Stump Kernel

Lin and Li [13] constructed the stump kernel K(x, x′) = −‖x−x′‖1 and showed
that SVM with the stump kernel (SVM-Stump) has a strong connection to
AdaBoost-Stump. They found that SVM-Stump usually performs better than
AdaBoost-Stump due to the ability to construct infinite and dense ensemble of
the decision stumps. They also showed that SVM-Stump has comparable classi-
fication power with SVM-Gauss, while having the advantage of faster parameter
selection. Thus, we want to see whether SVM-Stump can also have those ad-
vantages on the SAGE dataset. We set up SVM-Stump with similar steps to
SVM-Linear, with the difference that SVM-Stump uses the stump kernel and
searches for C∗ with C ∈ {2−17, 2−15, · · · , 22}.

Although the stump kernel is nonlinear and defines a mapping to an infinite
dimensional space, the classifier obtained from SVM-Stump can be partially
interpreted. The classifier is proved to be equivalent to an ensemble classifier [13]

g(x) = sign

(

D
∑

d=1

∑

q∈±1

(
∫

wq,d(α)sq,d,α(x) dα

)

+ b

)

.

Here, sq,d,α is the decision stump mentioned in Subsection 2.1, and wq,d(α) dα is
its infinitesimal weight. Unlike AdaBoost-Stump, in which only a finite T decision
stumps are included in the ensemble classifier, SVM-Stump averages over an
infinite number of them. Note that it is not hard to compute the aggregated
weight

Wd =
∑

q∈±1

∫

w2
q,d(α) dα

from the classifier. The value of Wd measures the amount of decision stumps
that are needed for feature (SAGE tag) number d. This is similar to the classi-
fier constructed by AdaBoost-Stump, where each nonzero wt indicates that the
associated stump and the feature being worked on are important.

3 Feature Selection with Ranking Algorithms

We use feature selection techniques on the SAGE dataset to select most relevant
features. Since we only have a limited number of samples, using a complicated
feature selection technique, similar to using a complicated classification algo-
rithm, increases the risk to overfit. Thus, we apply a rather simple technique:
using a feature ranking algorithm to rank the features according to their impor-
tance, and selecting the best M features for learning. In the following subsections,
we shall introduce three different feature ranking algorithms for our needs.

106

3.1 Feature Ranking with F-score

In NIPS 2003 Feature Selection Challenge, Chen and Lin [14] observed that the
F-score could be a useful measure for ranking the features. They used the features
with the best F-scores, and achieved good classification performance with SVM-
Gauss. The F-score measures the discriminative power of a feature when only
that feature is used for classification. When a feature d is more discriminative,
its associated F-score Fd is larger. The disadvantage of F-score is that mutual
information among features is not considered [14]. In this paper, we use ranking

with F-score (RFS) for baseline comparison.

3.2 Feature Ranking with Linear Weights

We mentioned in Subsection 2.2 that the weight wd in the classifier obtained
from SVM-Linear measures the importance of feature d for the hyperplane. For
example, Guyon et al. [15] used the measure with a backward elimination algo-
rithm to select good features for gene classification problems.

For a given set of labeled samples with all features, we can run SVM-Linear
(Fig. 1) on the samples, and use the magnitude of the linear weights |wd| for
ranking the features. We call this procedure ranking with linear weights (RLW).
It should be emphasized that the use of parameter selection in SVM-Linear is
important for obtaining robust and representative values of wd. If the parameters
are not well-selected, the hyperplane classifier constructed by SVM could perform
poorly and hence wd is not meaningful anymore.

3.3 Ranking with Aggregated Stump Weights

Similar to the linear weight in SVM-Linear, we can also compute the aggregated
stump weight Wd of feature d for the classifier obtained from SVM-Stump. As
mentioned in Subsection 2.4, the aggregated stump weight represents the amount
of decision stumps needed to describe the associated feature within the classifier.
The larger Wd is, the more stumps on feature d are needed, which implies that
feature d is more important. We follow similar steps as RLW and call this ranking

with aggregated stump weights (RSW).

4 Experiment

4.1 Setting

In general, the generalization performance of an algorithm should be estimated
using unseen samples. A common procedure is to use only parts of the given
samples for training, and test with the holdout samples. However, such procedure
would make inefficient use of the samples [5], and is especially wasteful when we
only have a small dataset.

107

The v-fold cross-validation makes a more thorough use of the samples. The
dataset D is randomly split into v mutually exclusive and approximately equal-
size subsets (folds) D1, D2, . . ., Dv . For iteration k = 1, 2, . . . , v, the subset
D \ Dk is used for training the algorithm, and Dk is used for testing. Let µk be
the test error on fold Dk. The cross-validation error is 1

|D|

∑v

k=1 |Dk|µk, which

is an estimator for the true generalization error.
An extreme of the v-fold cross-validation is called leave-one-out (LOO), in

which v equals the number of samples. During the computation of the LOO esti-
mator, the inner training set D\Dk is almost as large as D. That is, almost all the
given samples are used in training. This makes the LOO estimator theoretically
profound and almost unbiased for estimating the generalization performance.
The LOO estimator was used for some gene classification problems [1, 9]. How-
ever, it suffers from huge amount of computation when the number of samples
is large, and from high variance when the number of samples is small [5].

Other common choices of v are 3, 5, and 10. Kohavi [5] experimentally found
that the 10-fold cross-validation performs most well on real-world datasets; Tan
and Gilbert [7] applied the 10-fold cross-validation for their study of a gene
expression dataset. Note that it is not possible to have a definitely best choice
for estimation, because no estimator can be correct all the time [5]. Only looking
at one estimator also suffers the risk of being fitted if we evaluate too many
algorithms, and causes wrong interpretation on the results. The risk is especially
high when the dataset is small and the estimator may have a large variance
(e.g., LOO). Thus, for undersampled problems, results using different v should
be compared in order to draw a robust conclusion. With similar computational
time, we could do a 90-fold cross-validation on the SAGE dataset (LOO), a
10-fold cross-validation 10 times, or a 5-fold cross-validation 20 times. We shall
report the results of all these experiment settings.

To summarize, our experiment setting is based on the v-fold cross-validation,
where v = 5, 10 or 90. A complete algorithm is constructed by cascading
ranking and classifying steps, where the ranking step is one of RFS, RLW, or
RSW, and the classifying step is one of AdaBoost-Stump, SVM-Linear, SVM-
Gauss, or SVM-Stump. An algorithm only has access to the training folds, and
the test folds is kept unseen both to the ranking step and to the classifying
step. After the ranking step, we select the top M features, where M varies
in {50, 100, 200, 500, 1000, 27679}. When M = 27679, it is as if no feature rank-
ing/selection is done, and the full set is used. After feature ranking and selection,
the classification algorithm is applied to the simplified training folds with only
those M features, and the error is estimated on the simplified test fold with M

features.
We use LIBSVM [16] for the SVM algorithms. The RFS and RLW procedures

are also downloaded in the associated tools page of LIBSVM.

4.2 Result

We start from analyzing the 10-fold cross-validation result, which seems to be
the most reliable one among the three cross-validation settings we have tried.

108

10
2

10
3

10
4

16

18

20

22

24

26

28

30

32

34

number of features

cr
os

s−
va

lid
at

io
n

er
ro

r
(%

)

AdaBoost−Stump, T=100
AdaBoost−Stump, T=1000
SVM−Linear
SVM−Gauss
SVM−Stump

(a) RFS

10
2

10
3

10
4

16

18

20

22

24

26

28

30

32

34

number of features

cr
os

s−
va

lid
at

io
n

er
ro

r
(%

)

AdaBoost−Stump, T=100
AdaBoost−Stump, T=1000
SVM−Linear
SVM−Gauss
SVM−Stump

(b) RLW

10
2

10
3

10
4

16

18

20

22

24

26

28

30

32

34

number of features

cr
os

s−
va

lid
at

io
n

er
ro

r
(%

)

AdaBoost−Stump, T=100
AdaBoost−Stump, T=1000
SVM−Linear
SVM−Gauss
SVM−Stump

(c) RSW

Fig. 2. The 10-fold cross-validation errors on the SAGE dataset. Markers on each curve
mark the errors of feature set size 50, 100, 200, 500, 1000, and the full dataset.

In Fig. 2 we show the averaged 10-fold cross-validation error of different
classification and feature ranking algorithms. In general, the error goes down
when M , the number of features selected, gets larger. but the error with full
features is usually comparable to the one with 1000 features, if not higher, which
validates that learning might be deteriorated by irrelevant features. Overall, it
seems that 500–1000 features can represent the dataset well.

Although the standard error is around 1.3%, we can still conclude that
AdaBoost-Stump performs much worse than the SVM algorithms. In addition,
SVM-Stump is almost always the best, although the edge is not significant when
the feature ranking is done with RFS. SVM-Linear and SVM-Gauss perform

109

10
2

10
3

16

18

20

22

24

26

28

30

32

34

number of features

cr
os

s−
va

lid
at

io
n

er
ro

r
(%

)

full set
RFS
RLW
RSW

(a) AdaBoost-Stump, T = 1000

10
2

10
3

16

18

20

22

24

26

28

30

32

34

number of features

cr
os

s−
va

lid
at

io
n

er
ro

r
(%

)

full set
RFS
RLW
RSW

(b) SVM-Linear

10
2

10
3

16

18

20

22

24

26

28

30

32

34

number of features

cr
os

s−
va

lid
at

io
n

er
ro

r
(%

)

full set
RFS
RLW
RSW

(c) SVM-Gauss

10
2

10
3

16

18

20

22

24

26

28

30

32

34

number of features

cr
os

s−
va

lid
at

io
n

er
ro

r
(%

)

full set
RFS
RLW
RSW

(d) SVM-Stump

Fig. 3. The 10-fold cross-validation errors on the SAGE dataset. The error of using
the full dataset is plot as the broken horizontal line.

quite similarly. Since SVM-Gauss requires much more computational effort in
parameter selection, and the obtained classifier is less explainable, SVM-Linear
is preferable to SVM-Gauss.

Another way to look at these errors is to organize them according to the
learning algorithms. In Fig. 3 we show the 10-fold cross-validation errors of each
learning algorithm with different feature ranking algorithms. It is quite clear
that feature selection with RFS works the worst, and feature selection with
RSW overall could achieve the lowest error. However, RLW is comparable to

110

Table 1. The 5-fold cross-validation errors on the SAGE dataset, with standard error
shown in parenthesis.

ranking classifying 50 100 200 500 1000 27697 [full]

RLW SVM-Linear 22.9(1.0) 21.3(0.9) 22.2(0.9) 21.0(0.9) 21.4(1.0) 22.1(0.9)
RSW SVM-Linear 25.6(1.0) 22.6(1.0) 21.3(0.9) 21.3(1.0) 21.8(0.9) 22.1(0.9)
RLW SVM-Stump 22.5(0.9) 21.6(0.8) 21.3(0.8) 20.4(0.8) 19.1(0.9) 19.1(0.8)
RSW SVM-Stump 22.6(0.8) 21.1(0.9) 20.2(0.9) 19.1(0.9) 18.7(0.8) 19.1(0.8)

Table 2. The 10-fold cross-validation errors on the SAGE dataset, with standard error
shown in parenthesis.

ranking classifying 50 100 200 500 1000 27697 [full]

RLW SVM-Linear 22.0(1.3) 20.2(1.3) 21.0(1.4) 20.3(1.3) 20.9(1.3) 20.0(1.3)
RSW SVM-Linear 24.1(1.4) 20.4(1.2) 20.0(1.2) 19.8(1.3) 19.7(1.3) 20.0(1.3)
RLW SVM-Stump 21.3(1.3) 19.9(1.2) 20.3(1.3) 17.9(1.2) 16.9(1.2) 18.1(1.2)
RSW SVM-Stump 23.9(1.2) 19.6(1.4) 18.2(1.2) 17.6(1.2) 16.1(1.2) 18.1(1.2)

RSW in some settings. For example, when the number of selected features is
small (say 50), RLW usually works the best.

Since the 5-fold cross-validation uses less samples for training, the estimated
errors have larger positive bias and are thus higher than those from the 10-fold
cross-validation. However, the conclusion from these numbers on the best learn-
ing or feature ranking algorithms is similar. Thus, we do not include plots, but
just list the 5-fold cross-validation errors of the best two classification algorithms
and the best two ranking algorithms in Table 1. The 10-fold cross-validation re-
sults are similarly shown in Table 2.

If we carefully look at the 5-fold and 10-fold cross-validation results, we can
see that SVM-Stump is useful for classification, and RSW is useful for feature
selection. However, we should also notice that none of the differences between
SVM-Linear and SVM-Stump, as well as the differences between RLW and RSW,
are significant with a confidence level of 95% and corrected resampled t-test [17,
18].

In Table 3, we show the errors of the LOO cross-validation. While some
observations confirm our findings in the 5-fold and 10-fold settings, the large
standard error as well as the oscillating estimates make it hard to draw a reliable
conclusion on, for example, a suitable size for selecting features. The instability
of LOO results are also observed in the experiments with other classification and
feature ranking algorithms. Thus, even if LOO results are almost unbiased, it
can be risky to rely on these results for evaluating the performance of algorithms
on the SAGE dataset.

5 Conclusion

In this paper, we combined several state-of-the-art techniques for classification,
feature selection, and error estimation, and applied them for studying SAGE
results.

111

Table 3. The leave-one-out cross-validation errors on the SAGE dataset, with standard
error shown in parenthesis.

ranking classifying 50 100 200 500 1000 27697 [full]

RLW SVM-Linear 21.1(4.3) 18.9(4.1) 17.8(4.0) 21.1(4.3) 22.2(4.4) 21.1(4.3)
RSW SVM-Linear 24.4(4.5) 18.9(4.1) 18.9(4.1) 20.0(4.2) 18.9(4.1) 21.1(4.3)
RLW SVM-Stump 22.2(4.4) 22.2(4.4) 20.0(4.2) 21.1(4.3) 14.4(3.7) 17.8(4.0)
RSW SVM-Stump 27.8(4.7) 20.0(4.2) 21.1(4.3) 16.7(3.9) 16.7(3.9) 17.8(4.0)

We have shown that some classification techniques can achieve good per-
formance. For example, SVM-Stump can achieve promising performance either
when applied to the full set or when applied to the dataset with selected fea-
tures. Nevertheless, it is beyond our knowledge to assess whether this modeling
is reasonable.

In many cases, SVM-Linear also achieves similar performance to SVM-Stump.
However, Ng [19] showed that SVM-Linear, which is a rotational invariant al-
gorithm, requires a worst-case sample complexity that grows at least linearly in
the number of features. In this sense, SVM-Linear may not be a good choice for
undersampled datasets like SAGE.

We have also demonstrated that feature selection is important for the SAGE
dataset, and a good feature selection algorithm alone with a suitable size of fea-
tures can achieve better performance than the full set of features. We have shown
that a feature set of size 500 to 1000 from RSW feature ranking, smaller than 4%
of the original SAGE dataset, is good enough for predicting the cancerous status
of the sample.

We have estimated the generalization errors of each algorithm by trying dif-
ferent folds of cross-validation. We have shown that the commonly-used leave-
one-out estimator, albeit theoretically almost unbiased, has a large variation
and makes it hard to interpret the results. Hence, a v-fold cross-validation with
a smaller v would be more desirable.

Although the techniques provide promising results, we hope to know from
SAGE experts on whether the modeling of those learning algorithms is reason-
able. It is known in machine learning that any small piece of expert informa-
tion may dramatically improve the performance of learning algorithms [20]. The
SAGE dataset only provides the algorithms limited number of samples to con-
quer the task. Thus, more information, whether in the form of samples, known
importance of features, or the reasonability of classifiers, could possibly help us
design better techniques to further analyze the SAGE dataset.

Acknowledgment

We thank Yaser Abu-Mostafa, Amrit Pratap, and the anonymous reviewers
for valuable suggestions. This work has been mainly supported by the Caltech
Center for Neuromorphic Systems Engineering under the US NSF Cooperative

112

Agreement EEC-9402726. Ling Li is currently sponsored by the Caltech SISL
Graduate Fellowship.

References

1. Gamberoni, G., Storari, S.: Supervised and unsupervised learning techniques for
profiling SAGE results (2004) Presented in workshop on the ECML/PKDD 2004
Discovery Challenge.

2. Vapnik, V.N.: Statistical Learning Theory. John Wiley & Sons, New York (1998)
3. Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K.: Occam’s razor. Infor-

mation Processing Letter 24 (1987) 377–380
4. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. Journal

of Machine Learning Research 3 (2003) 1157–1182
5. Kohavi, R.: A study on cross-validation and bootstrap for accuracy estimation

and model selection. In Mellish, C.S., ed.: IJCAI 95. Volume 2., Montréal, Québec,
Canada, Morgan Kaufmann (1995) 1137–1145

6. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In:
Machine Learning: Proceedings of the 13th International Conference. (1996) 148–
156

7. Tan, A.C., Gilbert, D.: Ensemble machine learning on gene expression data for
cancer classification. Applied Bioinformatics 2 (2003) S75–S83

8. Holte, R.C.: Very simple classification rules perform well on most commonly used
datasets. Machine Learning 11 (1993) 63–91

9. Ben-Dor, A., Bruhn, L., Friedman, N., Nachman, I., Schummer, M., Yakhini, Z.:
Tissue classification with gene expression profiles. Journal of Computational Biol-
ogy 7 (2000) 559–584

10. Hsu, C.W., Chang, C.C., Lin, C.J.: A practical guide to support vector classifica-
tion. Technical report, National Taiwan University (2003)

11. Brown, M., Grundy, W., Lin, D., Cristianini, N., Sugnet, C., Furey, T., M. Ares,
J., Haussler, D.: Knowledge-based analysis of microarray gene expression data by
using support vector machines. Proceedings of the National Academy of Sciences
of the United States of America 97 (2000) 262–267

12. Keerthi, S.S., Lin, C.J.: Asymptotic behaviors of support vector machines with
Gaussian kernel. Neural Computation 15 (2003) 1667–1689

13. Lin, H.T., Li, L.: Infinite ensemble learning with support vector machines. In:
Machine Learning: ECML 2005, Porto, Portugal, Springer-Verlag (2005) 242–254

14. Chen, Y.W., Lin, C.J.: Combining SVMs with various feature selection strategies
(2005) To appear in the book “Feature extraction, foundations and applications”.

15. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classifi-
cation using support vector machines. Machine Learning 46 (2002) 389–422

16. Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. (2001)
Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

17. Weston, J., Elisseff, A., Schölkopf, B., Tipping, M.: Use of the zero-norm with
linear models and kernel methods. Journal of Machine Learning Research 3 (2003)
1439–1461

18. Nadeau, C., Bengio, Y.: Inference for the generalization error. Machine Learning
52 (2001) 239–281

19. Ng, A.Y.: Feature selection, L1 vs. L2 regularization, and rotational invariance.
In: Machine Learning: Proceedings of the 21th International Conference. (2004)

20. Abu-Mostafa, Y.S.: Learning from hints. Journal of Complexity 10 (1994) 168–178

113

