Introduction to Support Vector Machines

Dustin Boswell

August 6, 2002

1 Description

Support Vector Machines (SVM’s) are a relatively new learning method
used for binary classification. The basic idea is to find a hyperplane which
separates the d-dimensional data perfectly into its two classes. However,
since example data is often not linearly separable, SVM’s introduce the
notion of a “kernel induced feature space” which casts the data into a higher
dimensional space where the data is separable. Typically, casting into such a
space would cause problems computationally, and with overfitting. The key
insight used in SVM’s is that the higher-dimensional space doesn’t need to
be dealt with directly (as it turns out, only the formula for the dot-product
in that space is needed), which eliminates the above concerns. Furthermore,
the VC-dimension (a measure of a system’s likelihood to perform well on
unseen data) of SVM’s can be explicitly calculated, unlike other learning
methods like neural networks, for which there is no measure. Overall, SVM’s
are intuitive, theoretically well- founded, and have shown to be practically
successful. SVM’s have also been extended to solve regression tasks (where
the system is trained to output a numerical value, rather than “yes/no”
classification).

2 History

Support Vector Machines were introduced by Vladimir Vapnik and col-
leagues. The earliest mention was in (Vapnik, 1979), but the first main
paper seems to be (Vapnik, 1995).

3 Mathematics

We are given [training examples {x;,y;}, ¢ = 1,---,1, where each example
has d inputs (x; € Rd), and a class label with one of two values (y; €
{—1,1}). Now, all hyperplanes in R% are parameterized by a vector (w),
and a constant (b), expressed in the equation

w-x+b=0 (1)

(Recall that w is in fact the vector orthogonal to the hyperplane.) Given
such a hyperplane (w,b) that separates the data, this gives the function

f(x) =sign(w-x+b) (2)

which correctly classifies the training data (and hopefully other “testing”
data it hasn’t seen yet). However, a given hyperplane represented by (w,b)
is equally expressed by all pairs {Aw, b} for A € R™. So we define the
canonical hyperplane to be that which separates the data from the hyper-
plane by a “distance” of at least' 1. That is, we consider those that satisfy:

Xi-W+0b>+41 when y; = +1 (3)
xi-w+b<—1 when y; =—-1 (4)

or more compactly:
yi(xi-w+b)>1 Vi (5)

All such hyperplanes have a “functional distance” > 1 (quite literally, the
function’s value is > 1). This shouldn’t be confused with the “geometric” or
“Euclidean distance” (also known as the margin). For a given hyperplane
(w,b), all pairs {A\w, A\b} define the exact same hyperplane, but each has a
different functional distance to a given data point. To obtain the geometric
distance from the hyperplane to a data point, we must normalize by the
magnitude of w. This distance is simply:

yi(xi - W+ b) S 1
[wi —[[w]

d((w,b), x;) = (6)

Intuitively, we want the hyperplane that maximizes the geometric dis-
tance to the closest data points. (See Figure 1.)

n fact, we require that at least one example on both sides has a distance of ezactly
1. Thus, for a given hyperplane, the scaling (the A) is implicitly set.

Figure 1: Choosing the hyperplane that maximizes the margin.

From the equation we see this is accomplished by minimizing || w ||
(subject to the distance constraints). The main method of doing this is with
Lagrange multipliers. (See (Vapnik, 1995), or (Burges, 1998) for derivation
details.) The problem is eventually transformed into:

minimize: W(a) = -0 + 450, Eé-:l Yiyj oo (Xg - X;5)
subject to: 22:1 yic; =0
where « is the vector of [non-negative Lagrange multipliers to be deter-

mined, and C' is a constant (to be explained later). We can define the
matrix (H);; = y;y;(X; - X;), and introduce more compact notation:

minimize: W(a) =—a’1+ taTHa (7)
subject to: aly =0 (8)
0<a<Cl (9)

(This minimization problem is what is known as a Quadratic Programming
Problem (QP). Fortunately, many techniques have been developed to solve
them. They will be discussed in a later section.)

In addition, from the derivation of these equations, it was seen that the
optimal hyperplane can be written as:

W= iyiXi (10)
;

That is, the vector w is just a linear combination of the training examples.
Interestingly, it can also be shown that

ai(yi(w-x;+b)—1) =0 (Vi)

which is just a fancy way of saying that when the functional distance of an
example is strictly greater than 1 (when y;(w-x; +b) > 1), then a; = 0. So
only the closest data points contribute to w. These training examples for
which a; > 0 are termed support vectors. They are the only ones needed in
defining (and finding) the optimal hyperplane. 2 Intuitively, the support-
vectors are the “borderline cases” in the decision function we are trying to
learn. ® Even more interesting is that a; can be thought of as a “difficulty
rating” for the example x; - how important that example was in determining
the hyperplane.

Assuming we have the opitimal « (from which we construct w), we
must still determine b to fully specify the hyperplane. To do this, take any
“positive” and “negative” support vector, x* and x~, for which we know

(w-xT+0b)=+1
(W-x"+b)=-1

Solving these equations gives us
b:—l(w-x++w-x_> (11)
2

Now, you may have wondered the need for the constraint (eq. 9)

Zand had we thrown away the non-support vectors before training, the exact same
hyperplane would have been found.

3For example, in (Freund, et al. 1997a) they show the support vectors found by a SVM
classifying pictures of human faces vs. non-faces. It is interesting to see that the support
vectors on the non-face side are pictures that look somewhat like faces.

When C' = oo, the optimal hyperplane will be the one that completely sepa-
rates the data (assuming one exists). For finite C, this changes the problem
to finding a “soft-margin” classifier *, which allows for some of the data to
be misclassified. One can think of C' as a tunable parameter: higher C' cor-
responds to more importance on classifying all the training data correctly,
lower C' results in a “more flexible” hyperplane that tries to minimize the
margin error (how badly y;(w - x; +b) < 1) for each example. Finite values
of C' are useful in situations where the data is not easily separable (perhaps
because the input data {X;} are noisy).

4 The Generalization Ability of Perfectly Trained
SVM’s

Suppose we find the optimal hyperplane separating the data. And of the [
training examples, N of them are support vectors. It can then be shown
that the expected out-of-sample error (the portion of unseen data that will
be misclassified), IT is bound by

Ny
-1

I< (12)
This is a very useful result. It ties together the notions that simpler systems
are better (Ockham’s Razor principle) and that for SVM’s, fewer support
vectors are in fact a more “compact” and “simpler” representation of the
hyperplane and hence should perform better. If the data cannot be separated

however, no such theorem applies, which at this point seems to be a potential
setback for SVM’s.

5 Mapping the Inputs to other dimensions - the
use of Kernels

Now just because a data set is not linearly separable, doesn’t mean there
isn’t some other concise way to separate the data. For example, it might
be easier to separate the data using polynomial curves, or circles. However,
finding the optimal curve to fit the data is difficult, and it would be a shame
not to use the method of finding the optimal hyperplane that we investigated
in the previous section. Indeed there is a way to “pre-process” the data in
such a way that the problem is transformed into one of finding a simple

4See any of the main SVM references for more information on “soft-margin” classifiers.

% Transform the & 4
* input datatoa Tk
Dinta J5 inearly * new feature space. *
unseparable. & ’0 TN *
o Z= 0= Oz, x) o
o % =(x.%,%X)) o @
o
* z
£ Daia is separable 1
in this new space.

Figure 2: Separating the Data in a Feature Space.

hyperplane. To do this, we define a mapping z = ¢(x) that transforms the
d dimensional input vector x into a (usually higher) d’ dimensional vector
z. We hope to choose a ¢() so that the new training data {¢(x;),y;} is
separable by a hyperplane. (See Figure 2.)

This method looks like it might work, but there are some concerns.
Firstly, how do we go about chosing ¢()? It would be a lot of work to have
to construct one explicitly for any data set we are given. Not to fear, if ¢(x)
casts the input vector into a high enough space (d’ > d), the data should
eventually become separable. So maybe there is a standard ¢() that does
this for most data... But casting into a very high dimensional space is also
worrysome. Computationally, this creates much more of a burden. Recall
that the construction of the matrix H requires the dot products (x;-x;). If '
is exponentially larger than d (and it very well could be), the computation
of H becomes prohibitive (not to mention the extra space requirements).
Also, by increasing the complexity of our system in such a way, overfitting
becomes a concern. By casting into a high enough dimensional space, it
is a fact that we can separate any data set. How can we be sure that the
system isn’t just fitting the idiosyncrasies of the training data, but is actually
learning a legitimate pattern that will generalize to other data it hasn’t been
trained on?

As we’ll see, SVM’s avoid these problems. Given a mapping z = ¢(x),
to set up our new optimization problem, we simply replace all occurences of
x with ¢(x). Our QP problem (recall eq. 7) would still be

minimize: W(a) =—a’1+ 1a”Ha

but instead of (H)i; = yiy;(xi - x5), it is (H)i; = yiy;(d(xs) - #(x5)). (Eq.

10) would be
W= iy (x;)

And (Eq. 2) would be

= s+
— sign([zi iyip(x;)] - d(x) + b)
— sign(> cqiyi(p(xi) - (%)) + b)

The important observation in all this, is that any time a ¢(x,) appears,
it is always in a dot product with some other ¢(xp). That is, if we knew
the formula (called a kernel) for the dot product in the higher dimensional
feature space,

K (Xa,xp) = ¢(Xa) - ¢(xb) (13)

we would never need to deal with the mapping z = ¢(x) directly. The
matrix in our optimization would simply be (H);; = yiy;(K(x;,%;)). And
our classifier f(x) = sign(zi ;Y (K (x4,%x)) + b) Once the problem is set
up in this way, finding the optimal hyperplane proceeds as usual, only the
hyperplane will be in some unknown feature space. In the original input
space, the data will be separated by some curved, possibly non-continuous
contour.

It may not seem obvious why the use of a kernel aleviates our concerns,
but it does. Earlier, we mentioned that it would be tedious to have to
design a different feature map ¢() for any training set we are given, in order
to linearly separate the data. Fortunately, useful kernels have already been
discovered. Consider the “polynomial kernel”

K(xa,%xp) = (Xa - xp + 1) (14)

where p is a tunable parameter, which in practice varies from 1 to ~ 10.
Notice that evaluating K involves only an extra addition and exponentiation
more than computing the original dot product. You might wonder what the
implicit mapping ¢() was in the creation of this kernel. Well, if you were to
expand the dot product inside K ...

K(Xaa Xb) = (Xalxbl + Xq2Xp2 + . .-+ XgdXpd T 1)]) (15)

and multiply these (d+1) terms by each other p times, it would result in
(d+§ ~1) terms each of which are polynomials of varying degrees of the input
vectors. Thus, one can think of this polynomial kernel as the dot product of
two exponentially large z vectors. By using a larger value of p the dimension
of the feature space is implicitly larger, where the data will likely be easier
to separate. (However, in a larger dimensional space, there might be more

support vectors, which we saw leads to worse generalization.)

5.1 Other Kernels
Another popular one is the Gaussian RBF Kernel

Xqa — X 2
K (o x0) = exp(e (16)

where o is a tunable parameter. Using this kernel results in the classifier

. HX—Xi H2
= g iYi ——— |+
f(x) &gn[‘ ayexp(952

7

which is really just a Radial Basis Function, with the support vectors as the
centers. So here, a SVM was implicitly used to find the number (and loca-
tion) of centers needed to form the RBF network with the highest expected
generalization performance.

At this point one might wonder what other kernels exist, and if making
your own kernel is as simple as just dreaming up some function K (Xa,Xp).
As it turns out, K must in fact be the dot product in a feature space for
some ¢(), if all the theory behind SVM’s is to go through. Now there are
two ways to ensure this. The first, is to create some mapping z = ¢(x)
and then derive the analytic expression for K (Xa,Xp) = ¢(Xa) - ¢(Xp). This
kernel is most definitely the dot product in a feature space, since it was
created as such. The second way is to dream up some function K and then
check if it is valid by applying Mercer’s condition. Without giving too many
details, the condition states: Suppose K can be written as K (Xa,Xp) =
Y2y fi(xa) fi(xp) for some choice of the f/s. If K is indeed a dot product
in a feature space then:

//K(xa,xb)g(xa)g(xb)dxadxb >0
YV g such that

0< /gQ(X)dx < 00

8

The mathematially inclined reader interested in the derivation details is
encouraged to see (Cristianini, Shawe-Taylor, 2000). It is indeed a strange
mathematical requirement. Fortunately for us, the polynomial and RBF
kernels have already been proven to be valid. And most of the literature
presenting results using SVM’s all use these two simple kernels. So most
SVM users need not be concerned with creating new kernels, and checking
that they meet Mercer’s condition. (Interestingly though, kernels satisfy
many closure properties. That is, addition, multiplication, and composition
of valid kernels all result in valid kernels. Again, see (Cristianini, Shawe-
Taylor, 2000).)

5.2 How to Choose the right Kernel for your Data Set

When designing a SVM, the user is faced with the choice of which kernel
to use, and for a given kernel, how to set the parameter(s). (Recall, the
polynomial kernel has a degree p to set; RBF kernels have the parameter
0.) The novice might be tempted to try all types of kernels/parameters, and
choose the kernel with the best performance. This however, is likely to cause
overfitting. The theoretical framework predicting a SVM’s generalization
performance is based on the assumption that the kernel is chosen a priori.
How then, is one supposed to choose one kernel over another, ahead of time?
Ideally, the user should incorporate his or her knowledge about the problem
type, without looking at the specific training data given. For example,
if one were training a SVM to do face recognition, they should look into
previous work done with SVM’s and face recognition. If past work has
shown polynomial kernels with degree p = 2 to perform well in general, then
that would be the best guess to use.

6 Implementing SVM’s

The most straightforward way to train a SVM (determine the optimal hy-
perplane (w,b)) is to feed (eqs.7 - 9) to a Quadratic Programming Solver.
In Matlab, this would be the function quadprog().” For training sets of less
than 1000 examples, solvers like these may be fine. However, as the number
of examples gets larger, there are two concerns. First, since quadprog (and
many other QP packages) explicitly requires the matrix H, the memory con-
sumption is O(I?). With 8-byte precision, and 500MB of RAM, this imposes
a limit of ~ 8,000 training examples. The second concern is that numerical

®Some older versions of Matlab have gp() instead, which is older, and less robust.

instability (resulting in sub-optimal solutions, or sometimes no solution at
all) becomes a potential hazard. And as far as quadratic programming goes
in general, numerical instability is a tricky problem to get rid of. Never-
theless, “off the shelf” methods like quadprog are unsuitable for problem
instances of [= 100,000 examples or more.

6.1 Decomposition Methods

The general trick to avoid these problems is to decompose the problem into
subproblems, each of which are small enough to solve with a generic QP
solver.

One simple method of “chunking” (Boser, Guyon, Vapnik, 1992) starts
with an arbitrary subset of the data, and solves the problem for those ¢
examples (¢ < 1). The support vectors from that subset are added to a
second chunk of data, and the process is repeated until all vectors are found.
Notice that toward the end of the algorithm, as all of the support vectors
are gathered, the subproblems contain O(Ng := # of support vectors)
examples, which results in a O(N?2) memory requirement for the underlying
QP-solver. Clearly, this method works best when Ny < [. Otherwise, if
Ny ~ [, the “subproblem” is just as big as the original one. The run-time of
this algorithm is supposedly O(I3).

Another decomposition method given by (Freund, Girosi, Osuna, 1997b)
avoids this potential difficulty by creating a strict upper limit (¢) on the
number of examples dealt with at a time. The algorithm has a so-called
“working set” of examples on which the objective function is currently be-
ing minimized. Depending on how/if they violate the optimality conditions,
training examples are added to/removed from the working set in such a way
that an increase in the objective function occurs after each QP subproblem.
Since the overall QP problem is convex, any local maximum achieved this
way is in fact a global maximum. ® The memory requirement of this pro-
cedure is O(ql). As for runtime, we should expect it takes longer than the
simpler “chunking” version. It does work well in practice, but there is no
proof of a convergence rate. (Freund, Girosi, Osuna, 1997b) successfully ap-
ply this method to a task where [= 110,000 and Ns = 100,000. (Joachims,
1999) extends the above method by giving run-time improvement heuristics,
such as how to choose a good working set.

5There seems to be some conflicting views in the literature about whether the conver-
gence of this method is guaranteed.

10

6.2 Optimization techniques for QP problems

At this point, we should mention some of the types of optimization tech-
niques and packages (particularly those that solve QP problems). The main
techniques are: stochastic gradient ascent, Newton’s method, conjugate gra-
dient descent, and primal-dual interior point method.

The naive method to find the optimal « for a given set of training exam-
ples is stochastic gradient ascent. The algorithm described in (Cristianini,
Shawe-Taylor, 2000) simply updates one «; at a time, and loops until the
termination criteria is met. Since it only deals with one example at a time,
it has virtually no memory requirements. Unfortunately, this method has
no convergence guarantees either.

The Newton method (used by (Kaufman, 1999)), is a one-step solution
to finding the optimal a vector. It requires O(g?) memory and O(¢?) com-
putation, where g is the number of examples being solved for.

The conjugate gradient technique (also used by (Kaufman, 1999)), is a
g-step solution. Overall, it also has a run-time of O(g?®). I've read literature
describing both conjugate and Newton methods to have the same inherent
memory complexity of O(q?), although it is ambiguous as to why this is the
case for conjugate gradient. (Kaufman, 1999) judges the Newton method to
be slightly more efficient than conjugate gradient in general.

Lastly, “Primal-Dual Interior Point” methods (Vanderbei, 1994) are of-
ten cited. This is the method used in the LOQO software package, and was
also incorporated in SV M package. 1 don’t know any details of this
algorithm, except that supposedly it performs well in training sets where
the number of support vectors is a large percentage of the whole training
set (contrast this to the decomposition methods that do best when support
vectors are sparse in the data set).

MINOS is a commercial QP package from the Systems Optimization
Laboratory at Stanford, invented by Bruce Murtagh and Michael Saunders.
I am unaware of the implementation details outside of the fact that it uses a
hybrid strategy of different techniques. It is mentioned here because it seems
to be a popular choice, and was used by (Freund, Girosi, Osuna, 1997ab) in
their experiments.

6.3 Sequential Minimal Optimization - Decomposition to the
Extreme

So far, all of the SVM training methods have the same flavor: since solving
the underlying QP problem outright is inefficient, they break down the prob-

11

lem in one way or another, and then solve the QP tasks of these carefully
chosen subproblems. In doing so there is a balance. The more sophisticated
our decomposition algorithm (resulting in smaller subproblems), the more
time is spent iterating over subproblems, and the less assurance we have
of good convergence rates. The benefit, of course, is that less memory is
required in solving the QP subproblems, and that we can worry less about
the numerical instability of QP packages. On the other hand, the less “fid-
dling” we do in the way of decomposition, the more “intact” our problem
remains, and the more assurance we have in the program’s outputting a
global optimum. Indeed, the reliance on QP packages is bothersome. As
mentioned before, numerical instability is a concern for QP solvers. And it
is a little unsettling knowing that most QP routines are too complex and
difficult to be implemented “on the fly” by the user. For this reason, the
method of Sequential Minimal Optimization (SMO), given in (Platt, 1999),
is very appealing.

Platt takes decomposition to the extreme by only allowing a working
set of size 2. Solving a QP problem of size 2 can be done analytically, and
so this method avoids the use of a numerical QP solver altogether! The
tradeoff, naturally, is that pairs of examples optimized in this way must
be iterated over many many times. The claim, however, is that since the
heart of the algorithm is just a simple analytic formula, the overall runtime
is reduced. The biggest advantage of this method is that the derivation
and implementation are astoundingly simple. Psuedocode can be found in
(Platt, 1999) or (Cristianini, Shawe-Taylor, 2000).

It should be noted that SMO, while introduced as a method for training
SVM classifiers, has also been extended to SVM regression (Flake, Lawrence,
2000). Also, (Keerthi, et al. 1999b) argue that Platt’s method of comput-
ing the threshold (b) in SMO is inefficient, and give modifications to his
psuedocode that make the algorithm much faster.

6.4 Other Techniques and Methods
6.4.1 Geometric Approaches

The intuition of finding the maximal margin hyperplane is very much a
geometric one. To solve it, Lagrangian multipliers are used to set up the
QP problem, and from there on, it’s pure mathematics. However, finding
the optimal hyperplane can be done in a geometric setting, too.

Consider the case when the data is separable in the hyperspace. It is a

12

fact then, that the convex hulls ” of the two classes are disjoint. The optimal
separating hyperplane would be parallel to some “face” of both convex hulls.
(And the points on that face would be the support vectors.) See (Keerthi,
et al. 1999a) for a method of training SMV’s in such a geometric way.

But even if the SVM isn’t trained geometrically, the notion of the con-
vex hull and that support vectors can only be points on the face of the
convex hull leads to an interesting data-filtering scheme. Recall that only
the training examples that become support-vectors are actually needed in
determining the optimal hyperplane. If there were some way to know ahead
of time which data points are not support vectors, we could throw them
out, and this would reduce the problem size (assuming Ny is somewhat
smaller than 7). (Ahuja, Yang, 2000) call such points on the convex hull
guard vectors (basically, “potential” support vectors). They show that de-
termining which data points are guard vectors amounts to solving a series
of Linear Programming problems (which are much easier to solve than QP).
Non-guard vectors can then be thrown out before the regular SVM training
procedure begins.

7 Web-sites, Software Packages, and Further Read-
ing

The book An Introduction to Support Vector Networks and other kernel-
based learning methods is a good place to start (along with their web-
site http://www.support-vector.net), as is the book Advances in Kernel
Methods - Support Vector Learning. (Vapnik, 1995) and (Burges, 1998) are
good papers introducing SVM’s. http://www.kernel-machines.org has a
lot of useful links to papers and SVM software.

One particularly easy to use software package is “SVM light” (which
was written by T. Joachims): http://www.cs.cornell.edu/People/tj/
svm_light

"The convex hull is simply the subset of points on the “exterior” of the set. For example,
if you wrapped cyran-wrap around the “ball” of points, the convex shape formed would
involve exactly those points from the convex hull. The rest of the points would be on the
interior, untouched by the cyran-wrap.

13

 http://www.support-vector.net
http://www.kernel-machines.org
http://www.cs.cornell.edu/People/tj/svm_light
http://www.cs.cornell.edu/People/tj/svm_light

References

e Narendra Ahuja, Ming-Hsuan Yang. “A Geometric Approach to Train
Support Vector Machines” Proceedings of the 2000 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR 2000), pp. 430-
437, vol. 1, Hilton Head Island, June, 2000.
(http://vision.ai.uiuc.edu/mhyang/papers/cvpr2000-paperl.pdf)

e Bernhard E. Boser, Isabelle M. Guyon, Vladimir Vapnik. “A Training
Algorithm for Optimal Margin Classifiers.” Fifth Annual Workshop
on Computational Learning Theory. ACM Press, Pittsburgh. 1992
(http://citeseer.nj.nec.com/boser92training.html)

e Christopher J.C. Burges, Alexander J. Smola, and Bernhard Scholkopf
(editors). Advances in Kernel Methods - Support Vector Learning MIT
Press, Cambridge, USA, 1999

e Christopher J.C. Burges. ”A Tutorial on Support Vector Machines
for Pattern Recognition”, Data Mining and Knowledge Discovery 2,
121-167, 1998
(http://www.kernel-machines.org/papers/Burges98.ps.gz)

e Nello Cristianini, John Shawe-Taylor. An Introduction to Support Vec-
tor Networks and other kernel-based learning methods. Cambridge
University Press, 2000
(http://www.support-vector.net)

e Flake, G. W., Lawrence, S. “Efficient SVM Regression Training with
SMO.” NEC Research Institute, (submitted to Machine Learning, spe-
cial issue on Support Vector Machines). 2000
(http://www.neci.nj.nec.com/homepages/flake/smorch.ps)

e Robert Freund, Federico Girosi, Edgar Osuna. “Training Support Vec-
tor Machines: an Application to Face Detection.” IEEE Conference
on Computer Vision and Pattern Recognition, pages 130-136, 1997a
(http://citeseer.nj.nec.com/osunad97training.html)

e Robert Freund, Federico Girosi, Edgar Osuna. “An Improved Training
Algorithm for Support Vector Machines.” In J. Principe, L. Gile, N.
Morgan, and E. Wilson, editors, Neural Networks for Signal Processing
VII — Proceeding of the 1997 IEEE Workshop, pages 276-285, New
York, 1997b

(http://citeseer.nj.nec.com/osuna97improved.html)

14

(http://vision.ai.uiuc.edu/mhyang/papers/cvpr2000-paper1.pdf)
(http://citeseer.nj.nec.com/boser92training.html)
(http://www.kernel-machines.org/papers/Burges98.ps.gz)
(http://www.support-vector.net)
(http://www.neci.nj.nec.com/homepages/flake/smorch.ps)
(http://citeseer.nj.nec.com/osuna97training.html)
(http://citeseer.nj.nec.com/osuna97improved.html)

Thorsten Joachims. ”Text Categorization with Support Vector Ma-
chines: Learning with Many Relevant Features”, 1998
(http://www.joachims.org/publications/joachims_98a.ps.gz)

Thorsten Joachims. ”Making Large-Scale SVM Learning Practical”,
1999 (Chapter 11 of (Burges, 1999))
(http://www.joachims.org/publications/joachims_99a.ps.gz)

Linda Kaufman. “Solving the Quadratic Programming Problem Aris-
ing in Support Vector Classification”, 1999 (Chapter 10 of (Burges,
1999))

S.S. Keerthi, S.K. Shevade, C. Bhattacharyya and K.R.K. Murthy.
“A fast iterative nearest point algorithm for support vector machine
classifier design,” Technical Report TR-ISL.-99-03, Intelligent Systems
Lab, Dept. of Computer Science & Automation, Indian Institute of
Science, 1999a.
(http://citeseer.nj.nec.com/keerthi99fast.html)

S.S. Keerthi, S.K. Shevade, C. Bhattacharyya, and K.R.K. Murthy.
“Improvements to Platt’s SMO algorithm for SVM classifier design.”
Technical report, Dept of CSA, IISc, Bangalore, India, 1999b.
(http://guppy.mpe.nus.edu.sg/ “mpessk/smo_mod.ps.gz)

John C. Platt. “Fast Training of Support Vector Machines using Se-
quential Minimal Optimization” (Chapter 12 of (Burges, 1999))
(http://www.research.microsoft.com/~jplatt/smo-book.ps.gz)

Robert Vanderbei. “Loqo: An Interior Point Code for Quadratic Pro-
gramming.” Technical Report SOR 94-15, Princeton University, 1994
(http://www.sor.princeton.edu/ rvdb/ps/loqo6.pdf)

Vladimir Vapnik. The Nature of Statistical Learning Theory. Springer-
Verlag, New York, 1995

Vladimir Vapnik, Corinna Cortes. ”Support vector networks,” Ma-
chine Learning, vol. 20, pp. 273-297, 1995.
(http://citeseer.nj.nec.com/cortes95supportvector.html)

15

(http://www.joachims.org/publications/joachims_98a.ps.gz)
(http://www.joachims.org/publications/joachims_99a.ps.gz)
(http://citeseer.nj.nec.com/keerthi99fast.html)
(http://guppy.mpe.nus.edu.sg/~mpessk/smo_mod.ps.gz)
(http://www.research.microsoft.com/~jplatt/smo-book.ps.gz)
(http://www.sor.princeton.edu/~rvdb/ps/loqo6.pdf)
(http://citeseer.nj.nec.com/cortes95supportvector.html)

	Description
	History
	Mathematics
	The Generalization Ability of Perfectly Trained SVM's
	Mapping the Inputs to other dimensions - the use of Kernels
	Other Kernels
	How to Choose the right Kernel for your Data Set

	Implementing SVM's
	Decomposition Methods
	Optimization techniques for QP problems
	Sequential Minimal Optimization - Decomposition to the Extreme
	Other Techniques and Methods
	Geometric Approaches

	Web-sites, Software Packages, and Further Reading

