Review of Lecture 17

e Occam’'s Razor

The simplest model that
fits the data is also the
most plausible.

complexity of h «— complexity of H

unlikely event «— significant if it happens

e Sampling bias
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It's a jungle out there
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THEORY

VC
bias—variance
complexity

bayesian
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The map

TECHNIQUES

T,

models

methods

linear
neural networks
SVM
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regularization
validation

aggregation

Input processing
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Probabilistic approach

Extend probabilistic role to all components

P(D | h=f) decides which h

How about P(h = f | D)7

©

(likelihood)

UNKNOWN TARGET DISTRIBUTION
P(y | X)
target function f: X—=9 plus noise

DATA SET
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The prior

P(h = f | D) requires an additional probability distribution:

_ P(D|h=f)P(h=f)

P(h=f|D) D)

x P(D|h=f)P(h=f)

P(h = f) s the prior
P(h = f | D) is the posterior

Given the prior, we have the full distribution
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Example of a prior

Consider a perceptron: h is determined by w = wg, wy, - - - , Wy

A possible prior on w: Each w; is independent, uniform over |[—1, 1]

This determines the prior over h - P(h = f)
Given D, we can compute P(D | h = f)
Putting them together, we get P(h = f | D)

x P(h=f)P(D|h=f)
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A prior Is an assumption

Even the most "neutral” prior:

X is unknown

The true equivalent would be:

X is unknown
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X is random

A
P(x)

X is random

Té(x—a)

ail X
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If we knew the prior

... we could compute P(h = f | D) for every h € H
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—> we can find the most probable i given the data
we can derive E(h(x)) for every X
we can derive the error bar for every x

we can derive everything in a principled way
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When is Bayesian learning justified?

1. The prior is valid

trumps all other methods

2. The prior is irrelevant

just a computational catalyst
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What is aggregation?

Combining different solutions hq, ho, - - - , Ay that were trained on D:;

i
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Regression: take an average
Classification: take a vote

a.k.a. ensemble learning and boosting
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Different from 2-layer learning

training \bdata

In a 2-layer model, all units learn jointly: Learing A

Algorithm

/
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/ / | \
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In aggregation, they learn independently then get combined:

training \bdata

Learning /T\

Algorithm

\
\
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Two types of aggregation

1. After the fact: combines existing solutions

Example. Netflix teams merging “blending’

2. Before the fact: creates solutions to be combined

Example. Bagging - resampling D
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Decorrelation - boosting

Create hy,--- , hy, - - - sequentially: Make h; decorrelated with previous h's:

ERONY Yalel RaYeTaritc T aolc

Emphasize points in D that were misclassitied

Choose weight of h; based on Ei,(hy)
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Blending - after the fact

T
For regression,  hi,hg, -+ ,hy —  g(x) = Z oy hy(X)
t=1
Principled choice of a;'s: minimize the error on an “aggregation data set’ pseudo-inverse

Some «y;'s can come out negative

Most valuable h; in the blend?
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Course content

Professor Malik Magdon-Ismail, RP/

Professor Hsuan-Tien Lin, NTU
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Course staff

Carlos Gonzalez (Head TA)
Ron Appel
Costis Sideris

Doris Xin
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Filming, production, and infrastructure

Leslie Maxftield and the AMT staff

Rich Fagen and the IMSS staff
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Caltech support

IST - Mathieu Desbrun

E&AS Division -

Provost's Office -

Ares Rosakis and Mani Chandy

Ed Stolper and Melany Hunt
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Many others

Caltech TA's and staff members

Caltech alumni and Alumni Association

Colleagues all over the world
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To the fond memory of

Faiza A. Ibrahim



