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• O

am's Razor

The simplest model that�ts the data is also themost plausible.
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It's a jungle out there
stochastic gradient descent

nonlinear transformation

overfitting  
data snooping

Occam’s razor

perceptrons

data contamination

error measures

cross validation

linear models

types of learning
kernel methods

logistic regression

training versus testing

VC dimension linear regression
deterministic noise

noisy targets   
bias−variance tradeoff

RBF

SVM

weight decay
regularization

soft−order constraint

sampling bias neural networks

exploration versus exploitation

weak learners

Gaussian processes

active learning

graphical models

decision trees 

ensemble learning

Bayesian prior

collaborative filtering

clustering

hidden Markov models

distribution−free

ordinal regression

Boltzmann machines

no free lunch

mixture of experts

Q learning

learning curves

semi−supervised learning

is learning feasible?


© AM
L Creator: Yaser Abu-Mostafa - LFD Le
ture 18 3/23



The map
TECHNIQUES PARADIGMSTHEORY
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linear
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input processing
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models methods
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validation
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Probabilisti
 approa
h
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Extend probabilisti
 role to all 
omponents
P (D | h = f) de
ides whi
h h (likelihood)
How about P (h = f | D) ?
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The prior
P (h = f | D) requires an additional probability distribution:

P (h = f | D) =
P (D | h = f) P (h = f)

P (D)
∝ P (D | h = f) P (h = f)

P (h = f) is the prior
P (h = f | D) is the posterior
Given the prior, we have the full distribution
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Example of a prior
Consider a per
eptron: h is determined by w = w0, w1, · · · , wd

A possible prior on w: Ea
h wi is independent, uniform over [−1, 1]

This determines the prior over h - P (h = f)

Given D, we 
an 
ompute P (D | h = f)

Putting them together, we get P (h = f | D)

∝ P (h = f)P (D | h = f)
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A prior is an assumption
Even the most �neutral� prior:

x is  unknown

1−1
x

P(x)

x is  random

Hi

Hi

−1 1

The true equivalent would be:
x is  unknown

1−1
x

x is  random

Hi

Hi

−1 1a

δ −a(x    )
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If we knew the prior
. . . we 
ould 
ompute P (h = f | D) for every h ∈ H

=⇒ we 
an �nd the most probable h given the data
we 
an derive E(h(x)) for every x

we 
an derive the error bar for every x

we 
an derive everything in a prin
ipled way
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When is Bayesian learning justi�ed?
1. The prior is validtrumps all other methods
2. The prior is irrelevantjust a 
omputational 
atalyst
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What is aggregation?
Combining di�erent solutions h1, h2, · · · , hT that were trained on D:

Hi

Hi

Regression: take an average
Classi�
ation: take a vote
a.k.a. ensemble learning and boosting
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Di�erent from 2-layer learning
In a 2-layer model, all units learn jointly: training   data

Algorithm

Learning

Hi

Hi

In aggregation, they learn independently then get 
ombined:
training   data

Algorithm

Learning

Hi

Hi
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Two types of aggregation
1. After the fa
t: 
ombines existing solutions

Example. Net�ix teams merging �blending�
2. Before the fa
t: 
reates solutions to be 
ombined

Example. Bagging - resampling D

training   data

Algorithm

Learning

Hi

Hi
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De
orrelation - boosting
Create h1, · · · , ht, · · · sequentially: Make ht de
orrelated with previous h's:

training   data

Algorithm

Learning

Hi

Hi

Emphasize points in D that were mis
lassi�ed
Choose weight of ht based on Ein(ht)
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Blending - after the fa
t
For regression, h1, h2, · · · , hT −→ g(x) =

T∑

t=1

αt ht(x)

Prin
ipled 
hoi
e of αt's: minimize the error on an �aggregation data set� pseudo-inverse
Some αt's 
an 
ome out negative
Most valuable ht in the blend?
Un
orrelated ht's help the blend
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Course sta�
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Ri
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Calte
h TA's and sta� members
Calte
h alumni and Alumni Asso
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Colleagues all over the world
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