Review of Lecture 2 Since g has to be one of hy, ho, -+, hyy,

| | we conclude that
s Learning feasible?

Yes, in a probabilistic sense. I

Ein — Eout
E.(h) Ein(g) ()] > e

Then:
Ei.(h1) — Eo(h1)| > € or
Ei(hy) — Eoui(ho)| > € or

AAAAAAAAA

’Eln(hM) — Eout(hM)’ > €

Ei n( h)

P||En(h) — Ex(h)| >e] < 9¢—26°N This gives us an added M factor.
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A real data set
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Input representation

raw’ input X = (7.21, T2, + , T256)

linear model:  (wq, wy, wo, - - -, Wasg)

Features: Extract useful information, e.g.,

intensity and symmetry x = (1,21, Z2)

linear model: (wo, wy, wo)
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[llustration of features

X = (.21, T2) x1: intensity To. symmetry
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What PLA does

Evolution of Ei, and E, Final perceptron boundary
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The "‘pocket’ algorithm

PLA: Pocket:
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Classification boundary - PLA versus Pocket

PLA: Pocket:

Symmetry
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Outline

® |nput representation

e Linear Classification

e Linear Regression regression = real-valued output

e Nonlinear Transformation
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Credit again

Classification: Credit approval (yes/no)

Regression: Credit line (dollar amount)

age 23 years

_ annual salary $30.000
|nPUt' X = years in residence 1 year
years in job 1 year

current debt $15.000

d
Linear regression output: h(x) = Zw@- T; = W'X
1=0

©
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The data set

Credit officers decide on credit lines:

(X17 yl)a (X27 y2)7 S

Un, € R is the credit line for customer x,,.

Linear regression tries to replicate that.

©
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How to measure the error

How well does h(x) = w™x approximate f(x)?

In linear regression, we use squared error (h(x) — f(x))?

N
1
in-sample error: FE,,(h) = N g (h(x,) — yn)2
n=1
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lllustration of linear regression
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where X
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Minimizing E;,

Eo(w) = 4|Xw -y
VE,(w)=2X"Xw —y) =0
X'Xw =Xy
w = Xy where XTI = (X'X)"1XT

X1 is the ‘pseudo-inverse’ of X
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The pseudo-inverse

Xt = (XTX)"1X"

d+1 x d+1 d+1 x N

\ /

—ﬁ
d+1 x N
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The linear regression algorithm

1. Construct the matrix X and the vector y from the data set

(x1,91), -, (XN, yn) as follows

-
2] Y1
X9 Y2
X — . y —
T
— XN YN
\ L d, R L d,
input data matrix target vector

.. Compute the pseudo-inverse X1 = (X"X)~1XT

s Return w = Xy
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Linear regression for classification

Linear regression learns a real-valued function y = f(x) € R

Binary-valued functions are also real-valued! £1 € R

Use linear regression to get w where w'x,, = vy,, = £1

In this case, sign(w'x,,) is likely to agree with v, = +1

Good initial weights for classification

©
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Linear regression boundary

Symmetry

Average Intensity
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® |nput representation

e | inear Classification

e [inear Regression

e Nonlinear Transformation
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Linear is limited

Data: Hypothesis:
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Another example
Credit line is affected by 'years in residence’
but not in a linear way!

Nonlinear [|z; < 1]] and [[x; > 5]| are better.

Can we do that with linear models?

©
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Linear in what?
Linear regression implements

d
E W; Xy
i=0

Linear classification implements

d
sign g W; T;
1=0

Algorithms work because of linearity in the weights
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Transtorm the data nonlinearly
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