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0 VER THE PAST FIVE OR SO YEARS, A NEW WAVE 
of research in neural networks has emerged. One of the areas 
that has attracted a number of researchers is the mathematical 
evaluation of neural networks as information processing sys- 
tems. In this article, we discuss some ofthe main results in this 
area. Researchers have addressed, in specific terms, the ques- 
tions of memory capacity, computing power, and learning ca- 
pability of different neural network models. The performance 
of a conventional computer is usually measured by its speed 
and memory. For neural networks, measuring the computing 
performance requires new tools from information theory and 
computational complexity. 

Neural network models offer an interesting alternative to 
performing certain computations. They have been considered, 
particularly, for unstructured computations, such as pattern 
recognition and artificial intelligence problems, and approxi- 
mations to large optimization problems. 

~ 

The performance of a conventional 
computer is usually measured by its 
speed and memory. For neural 
networks, measuring the computing 
performance requires new tools from 
in formation theory and computational 
complexity. 

There are two popular models of neural networks; the feed- 
back model [9] and the feed-forward model [ 151. The feedback 
model is what triggered the current wave of interest in neural 
networks. The architecture of feedback networks can be de- 
scribed as an undirected graph (see Figure l ) :  often, the con- 
nections are bidirectional and symmetric in the models. The 
nodes are called neurons and the edges are called synapses. 

What characterizes a neural architecture in general, wheth- 
cr it is feedback or feed-forward, is that the number of neurons 
is huge. and that each neuron performs a very simple task. In 
many. if not most. models, neurons perform threshold logic 
only. Another common characteristic of many neural networks 
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is that the number of synapses per neuron is large. Usually a 
neuron is connected to  a good fraction of all other neurons. 

In the feed-forward model, the neurons are arranged into 
layers (see Figure 2 ) .  There are only directed synapses between 
each layer and the next. Thus, the connection is loop-free. The 
inputs are applied to the first layer, and the outputs are collect- 
ed from the last layer. A feed-forward network is a special case 
of combinational circuits, with the additional feature that the 
intermediate variables in the network can assume non-binary 
values. 

The neuron in both models performs the same function (as 
shown in Figure 3). The output .v is determined by the inputs 
.\-I....\-h. according to a threshold rule. In the case ofbinary vari- 
ables. the neuron simulates a function from 1 -  I , +  l I N  to 
~ - I ,  + 11 (we adopt a neural network notation taking the bina- 
ry convention to be + 1’s or - 1’s instead of 1’s or 0’s). The out- 
put depends on the input through a set of real numbers called 
the weights M ’ ~ . . . M ’ , ~ ,  a weight for every input variable. If the 
s u m  N 

I 5- w i x i  (1) 
1=1 

exceeds an internal threshold, f, the output j’ is set to + 1 ; if it is 
less than 1. 1 ’  is set to - 1. 

The set of functions that can be implemented using a single 
neuron is well understood. It is the set of threshold functions, 
or linearly-separable functions. If we consider the hypercube 
I -  I , +  U,”. any dichotomy that can be represented by a 
hyperplane that separates the points can be simulated by a sin- 
gle neuron. Non-binary neurons are also commonplace in 
neural network models. In this case, the threshold function 
produces an output that varies continuously between - 1 and 
+ 1 as the signal 

- 7 w i z i  - t  (2) 
i = I  

varies from large negative to large positive. 
The operation of the feed-forward model is that of a 

combinational circuit. where the inputs propagate and interact 
in one direction to produce the output. The computation time 
is the time required for the signals to propagate and for the out- 
put to settle. The operation of the feedback model is closer to 
that of a sequential, or asynchronous, computer. where the sys- 
tem is initialized to a state and evolves in time to a final state. 
This simulates a computation, where the initial state is the 
input and the final state is the output. 
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Fig. 1. Feedback neiwork 

The question of stability does not arise in feed-forward net- 
works because they are loop-free. It is important to predict how 
a feedback network evolves in time when the neurons are 
initialized to a certain state vector of bits. This evolution is an- 
alyzed with the help of an energy function that can be defined 
in terms of the states of the neurons and the (fixed) weights and 
thresholds. Under certain conditions, the energy decreases 
monotonically as the network moves from one state to  the 
next. In these cases, stability and convergence can be addressed 
by analyzing the descent of the scalar energy function instead 
of the transition of the state vector. This parity of state vector 
transition and energy function descent is the key to under- 
standing how to perform actual computations using feedback 
networks. 

The neurons and the synapses can be considered the hard- 
ware of a neural network, while the weights and thresholds can 
be considered the software. To program a neural network, we 
choose a set of weights that makes the normal operation of the 
network simulate the computation we have in mind. If the 
choice of the weights and thresholds, in terms of the desired 
computation, could be automated, it would constitute a learn- 
ing mechanism. For example, we could start with a set of train- 
ing samples from the function we want to implement, and the 
learning mechanism would then choose the proper weights and 
thresholds that make the network simulate the function. This 
method would eliminate the need to design a new network each 
time we have a function to implement. 

output 
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Representation 
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While learning in general stands by itself as a research disci- 
pline. learning in feed-forward networks has been given special 
attention. Problems for which learning has the most potential 
to offer a solution are the natural variety, such as pattern recog- 
nition. For these problems, the representation of the data is 
crucial to the complexity of the problem. A picture can be rep- 
resented just as a matrix of pixels, or it can be represented 
using a higher-level set of primitives that are better suited for 
recognizing the contents of the picture. In a feed-forward net- 
work, there are several internal representations of the data at 
each layer of pixels (Figure 2). This gradual transformation 
from raw data to higher levels of representation is very inter- 
esting. especially if the representations arise spontaneously via 
the learning mechanism. 

~ ~~~~~ ~ 

While learning in general stands by 
itself as a research discipline, learning 
in feed-forward networks has been 
given special attention. 

Memory Capacity 
In contrast with the standard memory, where the amount of 

inforniation storage is an explicit quantity, the information ca- 
pacity of neural network models is a debatable concept. lf we 
have a Random Access Memory (RAM) with M address lines 
and I data line (zM memory locations, each storing 1 bit of in- 
formation). the capacity is clearly 2M bits. How do we define 
the capacity for a neural network? 

The key is to look at the RAM in a different way. The RAM. 
as a whole, stores,? string of 2M bits. Therefore, it can distin- 
guish between 2” cases (the different ways of setting 2M bits 
independently to 0 or 1). One can look at the capacity of the 
RAM as the logarithm yf,]he number of cases it can distinguish 
between, namely logz 2- = 2“ bits. This definition treats the 
entire contents of the RAM as one object that encodes a mes- 
sage. The logarithm of the number of different messages is for- 
mally the information content of the message. 

When we look at a feedback network in this way, the defini- 
tion ofcapacity becomes apparent. While we read offthe infor- 
mation by observing the state transitions, the information is 
contained in the choice of the weights and thresholds. It is that 
choice that determines which states go to which states. How 
many different sets of weights and thresholds can we distin- 
guish between by observing the state transitions of the net- 
work? Using an argument for enumerating threshold func- 
tions. i t  can be shown following [ I ]  that there are 2aN3 
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distinguishable networks of N neurons, where a is asymptoti- 
cally a constant. Taking the logarithm, this means that the ca- 
pacity of feedback network is proportional to N3 bits. 

This definition of capacity is a bit theoretical. In order to 
take advantage ofthis capacity, we need to encode the informa- 
tion in the state transitions. To  read offthe information, we ob- 
serve which states go to which states and decode the message 
(Figure 4). This format of information storage is not practical, 
since the meaning is not apparent. 

Another format for information storage in feedback net- 
works, which is more practical, is stable states. As mentioned 
above, an energy function can be defined to show that state 
transitions lead to a stable state (a state where every neuron re- 
mains unchanged when it applies its update threshold rule). 
Stable states are vectors of bits that correspond to words in a 
regular memory. Indeed, convergence to stable states is the 
basis for using the feedback network as an associative memory. 
How many stable states can we store in a feedback network? 
We count only the states that we are free to choose, since these 
are the only ones that are relevant to information. The number 
of stable states is, essentially, PN(each consists of N bits, which 
are the individual states of the N neurons), where /3 is asymp- 
totically a constant. Thus, in terms of bits, the stable-state ca- 
pacity of a feedback network of N neurons is proportional to N2 
bits. It is not surprising that the capacity isdown from N3 to N2, 
since we obviously lose information ifwe ignore the transitions 
that lead to a given stable state. 

As we mentioned above, stable states that count are those 
that we can choose. There are algorithms that take a set of vec- 
tors and produce a network in which these vectors are stable 
states. One particularly simple one is the Hebbian rule, that 
amounts to choosing the matrix of weights to be the sum of 
outer products of the vectors to be stored. When we are forced 
to use the Hebbian rule, the stable-state capacity goes down 
further. The reason is that there are sets of vectors that can, in 
principle, be made stable, but for which the Hebbian rule fails. 
I t  can be shown that only y NllogN randomly-chosen stable 
states can be stored using the Hebbian rule, where y is asymp- 
totically a constant [ 141. In terms of bits, this capacity is pro- 
portional to N-'llogN bits. 

For feed-forward networks, there is no definition of memo- 
ry capacity that corresponds to stable-state capacity. After all, 
feed-forward networks do not have stable states, but rather 
inputloutput relations. For feed-forward networks with a 
single-bit output, the notion of discrimination capacity is in- 
troduced. Consider Figure 5, where a four-point function is 
represented geometrically. A threshold function corresponds 
to a line that separates the points that map to + 1 (labeled X) 

Hmmm ..... We'll have 
Lunch Thursday. 

0 

X 
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Fig. 5. Linear1.v separable and inseparable ,functions. 

from those that map to - 1 (labeled 0). Certain functions can 
be separated by a line (e.g., Figure 5a), while other functions 
cannot (e.g.. Figure 5b). In higher dimensions, the separation is 
done using a hyperplane. The discrimination capacity of a neu- 
ron (or a simple threshold function) is measured by the maxi- 
mum number of points that can be separated, in (almost) every 
possible way, using a hyperplane. this number is an indication 
of how big the set of input instances can be, while still expect- 
ing to simulate an arbitrary function on them using a single 
threshold. The discrimination capacity of a neuron turns out to 
be linear in the number of inputs [8]. Under simple assump- 
tions, the discrimination capacity of a feed-forward network 
that has one hidden layer is approximately proportional to 
both the number of inputs and the number of neurons [4]. 

Computing Power 
Most of the interest in neural networks arose from their use 

to perform useful computations. Roughly speaking, these com- 
putations fall into two categories; natural problems and 
optimization problems. Natural problems, such as pattern rec- 
ognition. are typically implemented on a feed-forward net- 
work. The characterization of those functions that can be im- 
plemented on feed-forward networks is discussed in [ 131. Two 
relevant parameters in the use of feed-forward networks for 
natural problems are; the discrimination capacity and the 
learning complexity, which are discussed elsewhere in this arti- 
cle. 

Optimization problems are typically implemented on a 
feedback network. One famous example is the Traveling Sales- 
man Problem (TSP), in which a salesman is supposed to tour a 
number of cities (visiting each exactly once, then returning to 
where he started) and desires to minimize the total distance of 
the tour (Figure 6). The intercity distances are given as the 

w 
Fig. 6. 7ia id ing salesinan problein. 
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input, and the desired output is the shortest (or near-shortest) 
tour. 

In order to implement a solution to the TSP, or any other 
optimization problem, on a feedback network, the energy func- 
tion is used as a medium [lo]. As we discussed above, the oper- 
ation of the feedback network implies a descent on the energy 
surface. By designing the network so that the minimum of the 
energy function coincides with a minimum-length tour, the 
network becomes a computer that searches for the minimum 
tour. For small-size instances of the problem, there are reports 
of efficient neural network solutions to the TSP and other 
optimization problems. The solutions are vulnerable to the 
major problem of descent methods, namely, local minima. 

It is possible to predict, theoretically, that feedback net- 
works cannot offer good solutions to hard problems of large 
size [2] [7]. The reason is that if a fast neural-network solution 
exists, then one can show that a fast conventional-computer so- 
lution also exists, which it does not, by virtue of the assump- 
tion that the problem is hard. One interesting observation is 
that the often-appearing fast convergence of feedback net- 
works to a stable state [ 121, which may sound like a computa- 
tional advantage, is actually grounds to argue that neural net- 
works cannot offer good solutions to hard problems. The point 
is that the complexity of the hard problem must be absorbed ei- 
ther in the network size or the convergence time, but, since the 
convergence time is small, the network size is forced to be pro- 
hibitively large. 

Learning by Example 
The idea of learning by example is illustrated in Figure 7. 

The goal is to produce a network (or, more generally, a system) 
that implements an unknown function, ,f; when given a suffi- 
cient number of input/output examples from the function. The 
process should be automated, as represented by a learning algo- 
rithm. The implementation may be only agood approximation 
o f f :  

Examples Network 
of Implementing 

y = fix) Y, = f(x,) 

Fig. 7. Learning 11y esarnpk. 

One of the popular algorithms for learning by example is 
back-propagation in feed-forward networks [ 151. the algorithm 
operates on a network with a fixed architecture by changing the 
weights, in small amounts, each time an example y j  = Axj) is 
received. The changes are made to make the response of the 
network to x, closer to the desired output, yI. This is done by 
gradient descent, and each iteration is simply an error signal 
propagating backwards in the network in a way similar to the 
input that propagates forward to the output. This fortunate 
property simplifies the computation significantly. However, 
the algorithm suffers from the typical problems of gradient de- 
scent. it is often slow and gets stuck in local minima. 

There are two questions pertaining to learning by example; 
an information question and a complexity question. On the 
one hand, the learning algorithm is supposed to construct f 
from only partial information ab0ut.f; namely, a number of ex- 
amples y, = ,f(si). I t  is clear, however, that there are cases where 
the examples do  not contain enough information about .L In 
this case, regardless of how clever the algorithm may be, it can- 
not produce an implementation of something it does not know. 
On the other hand, even if the examples contain enough infor- 
mation about ,L the complexity of putting together this infor- 

mation to come up with an implementation offmay be prohib- 
itive. 

The information question can be posed in terms ofgenerali- 
zation. Under what conditions will the performance of the net- 
work on the set of examples persist on previously unseen in- 
puts? For example. suppose we are given few examples and we 
use a large network. From the discrimination capacity discus- 
sion, we expect to find a set of weights that implements any 
function on the few points (essentially, by memorizing the 
input/output examples). In this case, we should not really ex- 
pect any generalization. The conditions under which generali- 
zation should be expected, have been studied using the notion 
of the Vapnik-Chervonenkis (VC) dimension [ 5 ]  [6] [17]. 
Roughly speaking, for a fixed number of examples, the smaller 
the network, the better the generalization. This is not to say 
that a smaller network is more likely to implement the func- 
tion, only more likely to behave similarly (for better or for 
worse) on a fresh input. The other conflicting requirement is 
that the network should be big enough to accommodate the 
function being implemented, regardless of the generalization 
question. 

The complexity question can be posed in terms of polyno- 
mial time complexity. Under what conditions does there exist 
an algorithm that runs reasonably fast (e.g., in time that is poly- 
nomial in the size of the problem) to produce a network imple- 
mentation offfrom the sets of examples? The complexity of 
learning has been studied in [ 1 11 [ 161, and, except for extreme- 
ly simple learning tasks, most of the results indicate that the 
learning complexity may be prohibitive. The experimental re- 
ports are mixed. Most of the learning tasks run sufficiently fast 
for small, yet interesting. problems. However, as the problem 
size increases, the computation time scales poorly. This obser- 
vation is consistent with the theoretical predictions. 
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