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This paper is dedicated to the memory of Herbert J. Ryser. 

Abstract-How difficult are decision problems based on natural data, 
such as pattern recognition? To answer this question, decision problems 
are characterized by introducing four measures defined on a Boolean 
function f of N variables: the implementation cost C(f), the randomness 
R(f), the deterministic entropy H(f), and the complexity K(f). The 
highlights and main results are roughly as follows. 1) C(f) = R(f) = 
H( f ) = K( f ), all measured in bits. 2) Decision problems based on natural 
data are partially random (in the Kolmogorov sense) and have low entropy 
with respect to their dimensionality, and the relations between the four 
measures translate to lower and upper bounds on the cost of solving these 
problems. 3) Allowing small errors in the implementation of f saves a lot 
in the low entropy case but saves nothing in the high-entropy case. If f is 
partially structured, the implementation cost is reduced substantially. 

I. INTRODUCTION 

T HE ACCESSIBILITY of available information is the 
central issue in decision-making based on  natural 

data. In a  typical pattern recognition problem, for exam- 
ple, we have more than enough  information to make the 
correct decision, but this is precluded by the high complex- 
ity of extracting the right bits of information from the 
data. 

Pattern recognition problems are unique in their compu- 
tational demands.  In contrast with the structured nature of 
the problems in computational complexity, the problems 
which are based on  “natural” data are inherently random, 
that is, so unstructured that they have no  concise effective 
definition. An algorithm that tells us whether or not there 
is a  tree in a  given picture contains, at least implicity, the 
lengthy definition of the object tree. The  purpose of this 
work is to define and  study the complexity of solving 
decision problems of random nature. 

To  do  so, we define four parameters to measure the 
complexity in the same way we measure the information. 
In terms of these parameters, we address questions like: 
What  is the cost of solving a  high-complexity problem? 
Should we hope  to find a  tricky algorithm or a  compact 
system to solve such a  problem with low cost? What  is the 
impact of the dimensionality of the problem? How signifi- 
cant is the partial structure of a  problem in reducing its 
complexity? Is there a  system that is capable of solving a  
wide class of problems optimally? These questions and  
their answers are the core of this work. 

A. Main Results 

Although the definitions and  relations are motivated by 
decision problems, the results can be  stated entirely in the 
context of the complexity of Boolean functions. We  can 
summarize our approach as follows. We  characterize a  
Boolean function f by four measures C(f ), R(f ), 
H( f ), K( f ). The  values of these measures are normalized 
to range approximately from 0  to N bits for a  function of 
N variables. Roughly speaking, C(f) measures the cost of 
implementing f based on  memory devices (related to 
combinational complexity [15], [23], [25]), R(f) measures 
the randomness or lack of structure in f (based on  the 
Kolmogorov-Chait in complexity [S], [13]), H(f) measures 
the entropy or essential dimensionality of the independent 
variables of f (related to Shannon’s entropy [24]), and  
K(f) measures the rank of f among  all Boolean functions 
as far as simple decomposit ion is concerned (based on  
compositional complexity [2]). An important preliminary 
result about these measures is that they share the common 
distribution of F ig. 1, so that approximately 22k functions 
have the value of each measure in the neighborhood of K 
bits. 

The  ma in results of the paper  are the pairwise relations 
between the four measures C, H, R, and K and the 
interpretation of these relations. The  convenience of hav- 
ing these four measures on  the same scale makes the form 
of these relations surprisingly simple. All of them point in 
one  direction; the values of these completely different 
measures are practically the same. More accurately, we 
have 12  inequalities: 

R(f) 5  K(f) + o(N), 

K(f) s R(f > + o(N), 

H(f) 5  K(f) + o(N), 

K(f) 5  H(f > + o(N), 

C(f) 5  K(f) + o@‘%  

K(f) 5  C(f) + o(N), 

H(f) 5  R(f) + o(N), 

R(f > 5 H(f) + o(N), 

for all f 

for almost all f 

for almost all, but not all, f 

for almost all f 

for all f 

for almost all f 

for almost all, but not all f 

for all f 

C(f) s R(f) + o(N), for almost all f 
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Fig. 1. Common distribution of four measures. 

which is asymptotically negligible with respect to N (mostly 
of the order log N), and “almost all” means all but an 
asymptotically negligible fraction. The exact statements 
are given in Section III. The proofs are based on enumera- 
tion arguments, explicit constructions, and simulation 
techniques. 

B. Previous Work 

Among the several approaches for defining complexity, 
[2], [25], and [26] had the most relevant notions. The 
complexity and cost models were inspired by [l] and [19], 
and by the relations between time and circuit complexity 
(e.g., [6]). The key to the characterization of randomness is 
provided in [8] and [13]. Some background textbooks are 
[14] and [22] for combinatorial methods, [9] for pattern 
recognition, [lo] and [17] for information theory, [12] and 
[19] for digital logic, and [5] and [23] for computational 
complexity. See [3] for many related results. 

Previous work on compositional complexity of Boolean 
functions [2] gives a complexity definition close to K(f) 
and proves some of the basic properties of what we call 
normal-form input configurations. What is new here is the 
uniform definition of K(f) for any number of variables on 
a bit scale, the distribution of K( f ), and the relation to 
implementation cost (combinational complexity). Previous 
work on combinational complexity of Boolean functions 
[15], [25] can be translated in terms of C(f) as C(f) = N 
- o(N) for almost all f. What is new here is the estima- 
tion of how many functions have a certain value for C(f) 
over the whole range from 0 to N. The work of Pippenger 
[21] implicitly incorporates the notions of deterministic 
entropy and approximation, and the relations between 
C(f) and H(f) and between C(f) and C,(f) can be 
derived as corollaries of his main theorem. What is new 
here is the derivation of similar results for K(f) and 
R( f ). Previous definitions of the Turing complexity of 
Boolean functions [23] are different from the definition of 
R(f )- 

C. Outline 

Section II contains the preliminary definitions and prop- 
erties used in the rest of the paper, especially in connection 
with the complexity measure K( f ). The main results are in 
Section III, where the four measures are defined and 
related, and their relations are interpreted. Section IV 
discusses the complexity in a probabilistic context, where 
small computational errors are allowed. Finally, false en- 
tropy is introduced in Section V to characterize the partial 
structure of practical problems. 

Lemmas are stated and proved in the appendices and 
are used technically in other proofs. Propositions are inter- 
mediate results about the notions of this paper and are 
used in the proofs of the theorems. They are stated in the 
text and proved in the appendices. The three theorems are 
the main results, and they are stated and proved in the 
text. While Theorem 1 relates K(f) to C(f ), the other 
pairwise relations are contained in the discussion in Sec- 
tions III-D and III-E as they follow the same line of 
argument. 

D. Notation 

Bits are used as the units throughout this work, and all 
logarithms (log) and exponent&& (exp) are to the base 2. 
As usual, 1 K ] stands for the largest integer less than or 
equal to K, while [K 1 stands for the smallest integer 
greater than or equal to K. 

We shall use the notion of a multiset, which is a collec- 
tion of objects where repetition is allowed and the order 
does not matter. The objects are called the components of 
the multiset, and the number of times a certain object 
appears in the multiset is called its multiplicity. The multi- 
set is denoted by listing its components enclosed in ( . ). 
If A and B are multisets, then the union AUB is the 
multiset formed by all the objects of A and B, with the 
sum multiplicities. 

As in most asymptotic results, an error term exists, 
denoted by o(N). A statement involving this symbol 
will be interpreted as follows: a function n from natural 
numbers to natural numbers exists, satisfying 
lim  N4,(n(W/N) = 0, and it will make the statement 
true when substituted for o(N). 

II. THE NORMAL FORM 

This section is devoted to the development of the basic 
notions and relations used in the definition of the com- 
plexity and cost measures in the next section. 

A. Boolean Functions 

Here, we set up the notion of Boolean function in a 
formal way that excludes the redundancy encountered in 
the standard definition of a function. For example, if f is a 
Boolean function of one variable and g is a Boolean 
function of two variables such that their values are always 
1 (constant functions), the two functions are formally 
different because their domains are different, but they are 
the same “function” in our definition. Furthermore, our 
definition makes the distinction between functions in the 
sense of operators which take a point in the domain to a 
point in the range and functions which represent Boolean 
variables that are dependent on a set of independent 
Boolean variables. 

Let n be a positive integer. A Boolean mapping on n, 
denoted by f,(.), is a mapping from (0, l}” (the set of all 
binary n-tuples) to (0, l}. The mapping f,( .) is an oper- 
ator which takes an n-tuple of O’s and l’s as an argument 
and produces 0 or 1 according to some specific rule. 
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Let U be  a  universal set of independent Boolean vari- 
ables assuming the values 0  or 1  only. The  cardinality of ZJ 
is potentially infinite. We  refer to any specific assignment 
of O’s and  l’s to all Boolean variables in CT as the state of 
the system. Let S = { si,. . 3, sN} be  any nonempty finite 
subset of U for some positive integer N. A Booleun 
mapping on S, denoted by fs (without further arguments), 
is a  mapp ing from (0, l}” (the set of all binary N-tuples 
indexed by the elements of S) to (0, 1). The  Boolean 
mapp ing fs defines a  dependent  Boolean variables whose 
value is determined by the values of the independent 
variables in S. In contrast to the Boolean mapp ing f,( .) 
on an  integer n, the value of fs is determined by the state 
of the system. 

For a  fixed S of cardinality N, there are 2N possible 
assignments of O’s and  l’s to the Boolean variables in S; 
hence there are 22N different Boolean mapp ings fs. The  set 
of all Boolean mapp ings fs on a  set S for all choices of S 
(finite nonempty subsets of U) is denoted by M . The  
cardinality of M  is potentially infinite. Some elements of 
M  are equivalent in the sense that for all possible assign- 
ments of O’s and  l’s to their independent Boolean vari- 
ables, they always assume the same value. This will happen  
when fs is actually independent of some of the Boolean 
variables in S. We  want to merge (identify) these map-  
pings into one  entity. 

Definition: The  relation = is defined on  M  as follows: 
gsl = hs* if, and  only if, for all states of the system, the 
values of gsl and  hsz are the same. 

Clearly, = is an  equivalence relation; hence it induces a  
partition of M into equivalence classes. Each equivalence 
class is a  set of all Boolean mapp ings like gsl and  hsz that 
are mutually equivalent (related by =). We  identify each 
equivalence class as an  object and  introduce the following 
definition. 

Definition: A Boolean function f is an  equivalence class 
of the relation = on  M. The  set of all Boolean functions 
is denoted by F. 

Notice that any Boolan function f depends on  a  finite 
number  of Boolean variables in U, because the definition 
of Boolean mapp ings on  S applies only to finite sets. The  
smallest set of variables on  which a  Boolean function 
depends is of special interest. 

Definition: The  support of a  Boolean function f, de- 
noted by T( f ), is the intersection of all sets S for which 
some Boolean mapp ing g, belongs to (the equivalence 
class) f. The  rank of f, denoted by r( f ), is the cardinality 
of its support, r(f) = IT( f )I. 

We shall adopt the usual liberal notation in the context 
of equivalence classes and  treat f as an  actual function 
rather than a  set of equivalent Boolean mapp ings whenever 
no  confusion as to what is meant  can arise. We  shall also 
refer to the value of f simply by f. We start by saying that 
only the constant functions f = 0  and  f = 1  have empty 
support T(f) = Cp (zero rank, r(f) = 0). If S is a  subset 
of U with cardinal&y N, the number  of Boolean functions 
whose supports are subsets of S is 22N, whereas the number  
of Boolean functions of support S is, by the principle of 

inclusion and  exclusion, C,“-,Cf)( - l)N-r 22r. On  the 
other hand, the number  of Boolean functions which de- 
pend  on  N variables, that is, whose rank is N, is poten- 
tially infinite. 

B. Configurations 

Proposing a  valid and  useful measure of complexity 
involves two considerations from theory and  practice that 
are often conflicting. From a  practical point of view, a  
function whose complexity measure is large must require a  
costly implementation. However, from a  theoretical point 
of view, a  measure of inherent complexity should be  
essentially independent of any specific implementation de- 
vices that may be  available. A significant definition of 
complexity must capture both aspects. We  introduce the 
components of our complexity measure here, but the full 
justification of the definition is reflected in the theorems of 
the following sections. 

Our building blocks are n-input “universal gates,” for 
example, programmable devices [19, sec. 2.121 such as a  
programmable read-only memory (PROM) with n address 
lines and  one  data line. Although any function of n  
variables can be  simulated by this universal gate, the cost 
of implementing such a  gate (in terms of the number  of 
standard switching devices or the number  of memory 
locations) is exponential in the number  of inputs. Many 
functions of n variables can be  simulated using less power-, 
ful devices of n inputs or several smaller universal gates 
interconnected together. The  normal form (Fig. 2) is the 
simplest way of breaking down a  function in this manner.  
It consists of ,a first stage of (primary) universal gates 
which take their inputs directly from the input Boolean 
variables and  a  second stage with one  (secondary) univer- 
sal gate which takes the outputs of the primary gates and  
produces the function being simulated. A normal form can 
be  thought of as an  interconnection of devices analogous 
to the disjunctive or conjunctive normal form [12] where 
the AND'S and OR'S are now replaced by universal gates. It 
also resembles the standard system of pattern recognition 
where the classification decision is based on  a  number  of 
features that are extracted from the inputs. This suggests 
the following terminology. 

Fig. 2. Normal form. 

Nomenclature: In the normal form, the universal gates 
of the first stage are called the primary gates or feature 
extractors, and the Boolean mapp ings they simulate are 
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called primary functions of features, denoted by F’s. The 
universal gate of the final stage is called the secondary gate 
or classifier, and the Boolean mapping it simulates is 
called the secondary function or classification decision, 
denoted by D. 

Hence the normal form is a simple decomposition of the 
function in question into a global classification decision 
based on local extracted features. The normal form struc- 
ture is based on support systems which were introduced in 
the context of local and global computation [l]. We now 
give the definition of configurations that formalizes this 
structure. 

Definition: A normal-form input configuration (or simply 
a configuration) C is a finite multiset of finite nonempty 
subsets of U, C = (S,, . . . , S,). The S, are called the 
components of the configuration C. The support of C, 
denoted by T(C), is defined as U,“=,S, (all Boolean varia- 
bles which appear in any component of the configuration). 
The cardinality of the support is called the rank of C, 
denoted by r(C) (dimensionality of the space of Boolean 
variables in the configuration). The length of C, denoted 
by l(C) = L, is the number of (not necessarily distinct) 
components of the multiset. The degree of C, denoted by 
d(C), is the maximum cardinality n, = ISi] of a component 
S, in C (zero for the empty configuration). 

Notice that the configuration (the multiset) can be empty, 
but if it has components, none of these components can be 
empty. Also, nothing infinite is allowed in a configuration. 
For each i = l;.., L, the nj Boolean variables in S, will 
be the inputs to one of L primary gates. The outputs of 
these L gates are then input to the secondary gate whose 
output becomes the overall simulated function. 

Definition: A nonempty configuration C = (S,, . . . , S,) 
is said to admit a Boolean function f if there exist Boolean 
mappings Fs’,, . . . , Fs”, on the subsets S,, . . . , S, of U (the 
superscript distinguishes between the F’s) and a Boolean 
mapping DL( .) on the integer L such that, for all states of 
the system, f = DL( Fs’,, . + . , Fst.). The empty configuration 
admits the constant functions only. 

A function admitted by a configuration is one that can 
be simulated using a normal form with the inputs specified 
by the configuration. Since the configuration is defined as 
a multiset, configurations will be equal if and only if they 
have the same components (with the same multiplicities). 
However, some unequal configurations are functionally the 
same. 

Definition: The set of all Boolean functions f admitted 
by a configuration C is denoted by F(C). Two configura- 
tions C, and C, are equivalent if they admit the same 
functions, that is, if F(C,) = i;(C,). The number of func- 
tions admitted by C is denoted by N(C)( = IF(C) 

We observe immediately that the support T(f) of a 
function admitted by a configuration must be a subset of 
the support of the configuration T(C). The set F(C) 
contains all Boolean functions that can be simulated on a 
normal form using the input configuration C. The number 
of functions N(C) admitted by a configuration C ex- 
presses the power of C. Notice that each function is 

counted as a single vote regardless of its “complexity.” 
Since the gates of the normal form are universal, the 
configuration that admits an inherently complex function 
will be powerful enough to admit a large number of 
simpler functions, and N(C) will be indeed large. This 
would not hold if the building blocks were special-purpose 
devices. We now develop some relations between the 
different parameters of the configuration as well as some 
structural properties. 

C. Properties of Configurations 

The parameters of a configuration C are interrelated. 
The following proposition describes several bounds on 
N(C), the number of functions admitted by C, in terms of 
the length, degree, and rank of C. These bounds will prove 
vital in estimating the complexity of Boolean functions in 
the next section and will provide insight into the nature of 
configurations. 

Proposition I: Let C = (S,, . * . , S,) be a configuration 
which admits N(C) Boolean functions. Let r(C), I(C) 
( = L), d(C) be the rank, length, and degree of C, respec- 
tively. Then, a) d(C) I log log N(C) _< max (l(C), d(C)) 
+ log(max(l(C), d(C)) + 1); b) Jy(c)< loglog N(C) 
I r(C). 

Notice that max (Z(C), d(C)) has the interpretation of 
being the maximum number of inputs in any gate of the 
configuration. The observation here is that 22n is a 
tremendously increasing function of n which makes N(C) 
essentially depend only on the size of the largest gate in 
the configuration and nothing else. Also, if a configuration 
C has r(C) variables, then no matter how these variables 
are distributed on different components, the size of one of 
the gates (possible the secondary one) must be at least 
Jyo. 

Although the configuration is just a multiset of subsets, 
it has the functional interpretation of simulating Boolean 
functions on normal forms. This makes configurations 
distinct from hypergraphs, for example. We shall use this 
fact to characterize configurations in a way similar to [2]. 

Definition: A configuration C = (S,, . . ., S,) is redun- 
dant if one of the S, can be omitted without diminishing 
F’(C)- 

This definition means that a redundant configuration is 
one which has an unnecessary gate among its primary 
gates. For example, it is easy to show that { si, s2} can be 
omitted from C = ({ si, s2}, { si, s2, ss}) without di- 
minishing F(C). The following proposition describes non- 
redundant configurations. 

Proposition 2: If a configuration C = (S,, . . . , S,) is 
not redundant, then for all subsets X of (1,. . +, L}, the 
following condition holds: 

b I si 2 IXI. 
‘icX ’ 

Proposition 2 says that if several components of the 
configuration have only a few variables between them, 
then these variables must be overrepresented, and some of 
these components may be omitted without damaging the 
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’ information passed on  to the secondary gate about the 
variables. This result is used in proving that the configura- 
tion does not have to be  very long and  hence in estimating 
the number  of distinct configurations. 

Proposition 3: a) If C is a  configuration with I(C), > 
r(C), then a  configuration C* with l(C*) 5 r(C*) exists 
which is equivalent to C. b) Let S be  an  N-subset of the 
universal set U. There are at most 2N2 possible values for 
P(C) over all configurations C whose support T(C) is a  
subset of S. 

Proposition 3  shows that we only need  to consider a  
finite and  relatively small set of configurations for any 
finite support. Since all N-sets are isomorphic, we con- 
clude that the number  of different values for N(C) for all 
configurations C of rank Nor less is at most 2N2, which is 
far less (for large N) than the conceivably possible 22N + 1  
values. We  are now in a  position to define complexity in 
terms of normal-form input configurations. 

III. FOUR MEASURES 

In this section, we introduce four measures defined on  
Boolean functions: the complexity K(f), the cost C(f), 
the randomness R( f ), and  the entropy H( f ). We derive 
and  interpret the pairwise relations between these mea-  
sures. 

A. Complexity 

Suppose we have a  number  of objects which possess a  
certain property to different degrees. We  want to give a  
quantitative measure of how much the object X possesses 
this property. The  most obvious way to do  so is to intro- 
duce some ordering of these objects according to how 
much they possess the property, then define the measure 
for X to be  the number  of objects which possess the 
property to a  lesser degree than X itself. We  call this a  
comparative approach. 

To  apply comparat iveness to define a  measure for the 
complexity of Boolean functions, we need  to order these 
functions according to their complexity. The  notion of 
reducibility is a  natural way of comparing the complexity 
of two procedures. If procedure A can be  carried out by 
transforming it in a  simple way to procedure B and then 
carrying out the procedure B instead, A cannot be  more 
complex than B. In our case, we use admittance to config- 
urations as a  basis for reducibility, which resembles other 
forms of reducibility such as projection [26]. A similar 
approach was introduced in [2]. The  point is that if we take 
the smallest configuration C that simulates a  Boolean 
function f, then the other functions admitted by C are 
reducible to f since they can be  simulated by the smallest 
structure that simulates f. 

Definition: The  comparative normal-form complexity (or 
simply the complexity) of a  Boolean function f, denoted 
by K( f ), is defined by 

K(f) = loglogmin{N(C)]Cadmitsf}. 

The  units of K(f) are bits. 

We first dispose of the log log as being a  scale down for 
N(C) which is typically of the form 22K. The  definition 
says that we consider all configurations C that admit the 
function f, choose the m inimal configuration with respect 
to the number  of functions it admits, and  take this number  
as a  measure for the complexity of f. Since N(C) 2  2  for 
all configurations, taking the logarithm twice is valid and  
K(f) 2 0  (with equality if and  only if, f is a  constant 
function). Also, K(f) I N for any function f which 
depends on  N variables, since f must be  admitted to. a  
configuration C whose support consists of these N vari- 
ables only and  hence has N(C) I 22N. Notice that the 
normal form served as a  “catalyst” in the definition of 
complexity. 

Example: Let f = S, $ S, CB * * . CBS, where @  de- 
notes the modu lo-two sum. It is easy to show that f is of 
complexity o(N) by constructing a  configuration that ad- 
m its it which has all of its gates with approximately fi 
inputs where each gate simulates the modu lo-two sum. 
Notice that this simple function requires maximal disjunc- 
tive and  conjunctive normal forms [12]. 

One  of the “health” properties of any complexity mea-  
sure is that it should resolve different levels of complexity. 
The  following proposition estimates the number  of func- 
tions at different levels of complexity. 

Proposition 4: Let 1;s be  the set of all Boolean func- 
tions f whose support is a  subset of nonempty N-set S. 
Define NK = ]{ f E F’lK(f) 1. K}I. For 0  I K I N, we 
have 

K- 1  I loglogN,< K+ 210gN. 

This means  that NK is approximately 22K functions 
(with respect to K with an  error of + o( N)). Although NK 
is the total number  of functions whose complexity is at 
most K, almost all of these functions are very close to K 
on  the complexity scale. This is because 22K - 22K-‘N is 
approximately 22K, where z is arbitrarily small and  N is 
sufficiently large. Hence the number  of functions whose 
complexity is between K - CN and  K is approximately 
22K. 

B. Cost 

To  have practical significance, the complexity measure 
K(f) should be  related to the cost of implementing f. We 
start by defining the cost. 

Definition: The  (denormalized) cost of a  universal gate 
of n inputs (n 2 0) is defined to be  2” “cells.” The  cost of 
an  interconnection is zero cells. The  cost of a  collection of 
gates and  interconnections is the sum of the costs of the 
components.  

This definition is motivated by the actual number  of 
cells in an  integrated-circuit PROM, and  by the fact that 
implementing an  n-input universal gate requires an  ex- 
ponential number  of standard gates. Notice that, in prac- 
tice, an  interconnection has a  nonzero cost. However, this 
fact can only strengthen the ma in results to be  proved 
shortly. 
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A normal form whose primary gates have n,, . . . , nL 
inputs costs 2L + Cf=,2”~ cells (the secondary gate has L 
inputs). For example, the normal form corresponding to 
the empty configuration has L = 0 and costs 1 cell. We 
now show that the cost of normal form implementation of 
a function f is directly related to the complexity K( f ). 

Proposition 5: Let f be a Boolean function of a com- 
plexity K(f) = K. Then, a) any normal form implementa- 
tion of f costs at least 2K cells, and b) there is a normal 
form implementation of f which costs at most 2K+10s(1+K) 
cells. 

This relation between the complexity of f and the cost 
of its normal form enables us to think of K(f) as the cost 
of this restricted implementation of f. To contrast this 
with the unrestricted implementation, we introduce a nor- 
malized version of combinational complexity. 

A collection of Q  universal gates (Fig. 3(a)) with 
nl; * 0) nQ inputs costs Cy=‘=,2”!1 cells. We use these gates 
together with the input lines si, * * *, sN to build a combina- 
tional circuit l? to simulate a given function. A combina- 
tion circuit (Fig. 3(b)) is an unrestricted loop-free intercon- 
nection of gates (with unlimited fan-out). l? simulates f if 
f is one of the gate outputs y,, * . . , ye in I. 

&htJ 

(a) 

Sl sN 

(b) 
Fig. 3. (a) Collection of Q  universal gates. (b) Combinational circuit 

made out of gates in (a). 

Definition: The (normalized) cost of a Boolean function 
f, denoted by C( f ), is defined by 

C(f) =logmin{costof I?:Isimulatesf}. 
The units of C(f) are bits. 

A constant function f is the output of a universal gate 
with zero inputs. Such a gate costs 2’ = 1 cell. Hence 
C(f) = 0 bits for the two constant functions, and C(f) > 
0 for all other functions. Also, C(f) I N for any function 
f which depends on N variables, since a universal gate 
with N inputs (2N cells) can simulate any such function. 
This normalization of cost simplifies the form of the 
relations to be derived and emphasizes the order of magni- 
tude of the cost. Notice that C(f) differs by at most a 
constant from the normalized cost based on any other 
complete basis of switching devices such as two-input 

NAND gates. To see this, one can simulate universal gates 
using the complete basis and vice versa. 

Although C(f) is based on the cost of an unrestricted 
circuit that simulates f without assigning any cost to the 
design of the circuit or its wiring, the distribution of C(f) 
is very close to that of K( f ), which was based on a very 
structured circuit. This distribution, estimated in the fol- 
lowing proposition, is a key factor in relating C(f) to 
K(f >- 

Proposition 6: Let Fs be the set of all Boolean func- 
tions f whose support is a subset of a nonempty N-set S. 
Define NK = ]{ f E  I;,IC(f) I K}J. For 0 I K I N, we 
have 

The situation is similar to Proposition 4. Again, the 
number of functions whose cost is between K - CN and K 
is approximately 22K (with respect to K with an error of 
f o( N)). A corollary of Proposition 6 is that almost all 
functions of N variables have C(f) 2 N - o(N), which is 
a known result (e.g., in [25]). 

C. Complexity Versus Cost 

The contrast between the definitions of complexity and 
cost is clear: K(f) is based on the theoretical principles of 
reducibility and comparativeness applied to the simplest 
decomposition of f, while C( f ) is based on the actual cost 
in the most general decomposition of f. However, these 
two quantities turn out to be closely related. Inherent 
complexity is to implementation cost what mass is to 
weight, an intrinsic property that is different from, but 
directly related to, a practical impact. 

Theorem 1: Given E > 0, a positive integer No exists 
such that for any Boolean function f whose support is a 
subset of a fixed N-set S, where N 2 No, and for 0 I K I 
(1 - e)N, the following holds. a) If K(f) = K, then C(f) 
I K + cN bits. b) The fraction of functions f in the 
complexity range K I K( f ) I K + e N which have C( f ) 
I K is less than 6. 

Proof: We shall use Propositions 4, 5, and 6. a) From 
Proposition 5, a normal form implementation of f exists 
which costs at most 2K+10g(1+K) cells. Taking N large 
enough, c N will be greater than log (1 + K) since K I N, 
and the result follows by taking the logarithm. 

b) From Proposition 4, we have the following estimates: 
NK I exp 2K’2 log N and NK+rN 2 exp 2KfZN-1. Therefore, 
taking N large enough, the number of functions whose 
complexity is between K and K + eN is at least 
exp 2 K+(r/2)N. From Proposition 6, at most exp 2K+10s(8+N) 
functions have C(f) I K. By taking N large enough, 
log (8 + N) will be less than (d4)N and the ratio of 
exp 2 K+(r/4)N to exp 2K+(r/2)N can be made less than 6 
which completes the proof. Q.E.D. 

Informally, this theorem says that if you take the func- 
tions of complexity K(f) and try to implement them using 
a circuit whose cost ‘is consistent with K( f ), you will 
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always succeed, whereas if you try to cut the cost, you will 
fail in almost all cases. Notice that for very low-complexity 
functions, the error term CN becomes significant, and  
hence the theorem does not say much. This has the nice 
interpretation that if the function is very simple, it may 
pay to look for a  compact unsystematic implementation. 

D. Randomness 

Theorem 1  says that the complexity measure K(f) is 
almost identical to the cost measure C(f). It turns out that 
the two measures are also related to the algorithmic infor- 
mation (Kolmogorov-Chaitin complexity [8], [13]) applied 
to Boolean functions, which we call the randomness of the 
function. We  establish these relations and  discuss their 
interpretation. 

Let U be  a  universal Turing machine [27] with input 
alphabet (0, l}, and  let p denote the binary program 
supplied to the tape of U. If, given p, U halts and  leaves 
the binary string w on  the tape, we say that w = U(p). Let 
r(f) be  a  listing of the truth table of the Boolean function 
f, that is, r(f) = TV, ~~,a . . , r2~ -r, where rk is the value of 
f when the inputs are the N-bit binary representation of 
the number  k. The  measure of randomness is defined in 
terms of the shortest length of a  program that generates 
r(f). This measure will have a  large value if we cannot 
describe the truth table in a  concise way. 

Definition: The  randomness of a  Boolean function f, 
denoted by R( f ), is defined by 

R(f 1  = logtin {IPI 2  W(P) = T(f )>. 
The  units of R(f) are bits. 

Since any string r(f) can be  generated by a  program 
whose length is a  constant (the code of a  trivial Turing 
machine) plus the length of the string (namely 2N), R(f) 
is at most = N bits. In contrast .with the K(f) and 
C( f ), R(f) is an  uncomputable function. 

The  versatility of a  universal Turing machine enables us 
to find short programs to generate r(f) whenever  f has a  
compact normal form (small K( f )) or a  compact combi- 
national circuit (small C( f )). For example, we can con- 
struct a  program p of length Ip( I 2K(/)+o(N) that gener-  
ates r( f ), thereby showing that R(f) I K(f) + o(N). 
Given K( f ), a  normal form exists that simulates f and 
has at .most K(f) inputs per gate. The  program is based 
on  this normal form and  consists of three parts. The  first 
part is a  constant-length routine for generat ing r( f ), bit 
by bit, given the full specification of the normal form and  
the truth tables of its gates. The  second part of the 
program is an  encoding of the normal form input config- 
uration, the length of this encoding is bounded  by a  
polynomial in N. The  third part is a  listing of the truth 
tables of the gates, at most K(f) + 1  tables each of length 
at most 2K(f) bits. Putting the three parts together, it is 
clear that Ip 1 I 2  K(f)+“(N). We  can also show that R(f) 
I C(f) + o(N) by constructing a  program to generate 
r(f) based on  the smallest circuit that simulates f. We fix 
a  lexicographic ordering of all circuits, with the less costly 

circuits coming first. The  program p includes the smallest 
index of a  circuit that simulates f (by Proposition 6, this 
index will be  at most 2C(‘)f”(‘v) bits long), a  constant- 
length routine to “decode” the circuit from its index, and  a  
constant-length routine to generate r(f) from the circuit. 
The  details are straightforward. 

On  the other hand, for any K, there are at most Cf:a2’ 
< 22K+1 programs p of length IpI I 2K bits, and  hence at 
most that many functions f with R(f) I K. Using the 
same argument in part b) of Theorem 1, the other direction 
of the relations between K(f) and R(f) and between 
C(f) and  R(f) is established. 

An interesting interpretation can be  gained from these 
relations. Wh ile C(f) measures the size of a  purely combi- 
national implementation of f, R(f) measures the size of a  
purely sequential implementation. An important merit of 
K(f) is its intimate relation to both of these measures. The  
distribution of these measures was a  key factor in the 
arguments; the number  of functions having K(f) s 
K(C( f) I K, or R(f) 5  K) is approximately 22K. Wh ile 
this approach relates complexity measures in an  “almost 
always” sense, it is of interest to investigate which mea-  
sures are pointwise identical, that is, different by o(N) for 
every function f [4]. 

E. Deterministic Entropy 

Proposition 4  may raise the question as to whether or 
not there is an  important class of functions whose com- 
plexity is less than K, other than those functions which 
depend  on  less that K variables. The  answer to this 
question is fortunately yes. The  class we are concerned 
with here is the class of low-entropy functions. 

Definition: Let S be  a  fixed nonempty N-subset of U. If 
a  function f, whose support is a  subset of S, assumes the 
value 1  (or the value 0) in h  I 2N-’ states of the variables 
in S, then f is said to be  of (deterministic) entropy 
H = log(1 + h). The  units of entropy are bits. 

Functions of low entropy have relatively few l’s or O’s in 
their Karnaugh maps [12]. The  motivation for this 
terminology will become apparent shortly. Notice that the 
definition of H depends on  (the fixed) N. We  are inter- 
ested in estimating the complexity of the functions of 
entropy H. W ithout loss of generality, we shall consider 
only the functions with h 1’s. 

Definition: Given a  function f of entropy H, the state of 
the variables in a  subset S, of S is positiue if there is an  
assignment of O’s and  l’s to the rest of the variables in S 
that makes f = 1. 

f can have at most h = 2H - 1  positive states for any 
subset Si, since only h l’s are in the Karnaugh map  of the 
function. Therefore, as far as f is concerned, the state 
of the variables in Si can be  encoded using [log (1 + h)l = 
[H 1  binary variables (the extra 1  represents “the state is 
not positive”). Taking ]S,] > [HI, this encoding con- 
stitutes information compression, since we represent a  
number  of variables by a  smaller number  of variables. 
Furthermore, in terms of the new variables (the com- 
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pressed variables from S, together with the rest of the 
variables outside S,), the entropy of the function remains 
the same, and hence we can repeat this compression. This 
fact is used to implement low-entropy functions on circuits 
and normal forms of moderate size. 

Circuit Implementation: Consider an arbitrary Boolean 
function f of N variables whose entropy is H bits. Since 
we can compress any number of variables into [H 1 vari- 
ables, we repeatedly compress [ H 1 + 1 variables into [ H 1 
variables, each time using [ H] universal gates of [ H] + 1 
inputs (Fig. 4(a)). We thus reduce the N variables to 
N - 1, N - 2;. -, down to any number of variables, say 
[H] + 1 variables (Fig. 4(b)). We can then implement the 
function f in terms of these [ Hl + 1 variables using one 
universal gate of [H] + 1 inputs. The compression from 
N to [H] + 1 variables takes (N -[HI - 1) x [H] uni- 
versal gates of [H 1 + 1 inputs, and then we have the final 
gate with [H] + 1 inputs too. Therefore, the cost of this 
circuit is (1 + (N -[H] - 1) X [H])2rH1+1 cells. Since 
0 5 [H] < N, this cost is I 2H+o(N) cells. 

Normal-Form Implementation: Suppose that H -=K N. 
Partition S into JN/K subsets each of cardinality &?@ 
(approximately); Consider the configuration C that has 
[ H 1 duplicates of each of these subsets. Each primary gate 
has &!% inputs, and the secondary gate also has 1 H] 
x ,/m = m inputs (Fig. 5(a)). Therefore, log 
log N(C) will be approximately m (by Proposition 1). 
Furthermore, C admits any function f of entropy H since 
the [ Hl (duplicate) primary gates can be programmed to 
encode the (relevant) state of their inputs, and the sec- 
ondary gate can then decide whether f = 1 (matched posi- 
tive states) or f = 0 (unmatched positive states, or some 
non-positive state). If H is not much smaller than N, 
a configuration C can still be constructed using [H] 
duplicates of a subset of S having approximately 
(N + H)/2 elements together with the rest of the elements 
in S appearing as singletons (Fig. 5(b)). This configuration 
has log log N(C) = (N + H)/2. 

6 

I I 

,H,‘-;Vai,ables + 

(a) 

FIllal L- Gate 
‘[Hj+ I Varlobles 

/ / / / / / 

--; 

I 
T 

[H] + 2 Variables 

N - 2 Varfables 

N - I Var lables 

N Variables 

IHI + I Vorlables 

@I 

Fig. 4. (a) Compressing 1 H] + 1 variables into [H] variables. (b) 
Circuit for implementing any function of N variables with entropy H 
using block in (a). 

H x N =&% Primary Gates 
fi 

(4 

>~(H+N) h2 (H +N) Swgletons 

(b) 

Fig. 5. (a) Normal form for implementing any function of N variables 
with low entropy H. (b) Normal form for implementing any function of 
N variables with entropy H. 

Notice that in all these implementations, the same cir- 
cuit or normal form can simulate any function f of 
entropy H by proper programming of the gates. This 
makes them universal structures for all problems of dimen- 
sionality N and entropy H. It is appropriate to ask whether 
we can do substantially better for euely function. The 
following theorem proves the contrary for circuits, but the 
question regarding normal forms is still open [4]. 

Theorem 2: Let S be a nonempty N-subset of U, and 
let F’(H) be the set of functions of entropy H (where 
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2H - 1  5  2@’ is an  integer). Define C, = max {C(f)] 
f E Fs(H)} and  K, = max {K(f)lf E 4(H)). Then, a> 
H - o(N) 4 C,, < H + o(N); b) H - o(N) < K, I 
(H + N)/2 + o(N). 

Proof: We shall use Lemmas 1  and  2  (Appendix I) 
and  Proposition 4. a) The  right-hand side (RHS) follows 
from the circuit implementation described above. For the 
left-hand side (LHS), we take H > 3, without loss of 
generality (since C, 2  0  2  3  - o(N)). The  number  of dif- 

ferent f’s with 2H - 1  l’s is 2N 
2H- 1  

, which is more 

than 2N 
( i 

i i 

2H-1 . 
By Lemma 2, this is at least (2p(2+(H-1)/2)) 

x exp (2NH(2H-‘-N )). By Lemma 1, this is at least 
(2-(2+(H-1)/2)) X exp((N - H + 1)2H-1). Since H > 3, 
this is greater than exp ((N - H)2H-1) 2 exp 2H-2. From 
Proposition 6, since log(8 + N) = o(N), at least one  of 
the functions f of entropy H has C(f) 2  H - o(N), and  
hence C, 2  H - o(N). b) The  RHS follows from the 
normal form implementation described earlier. The  LHS 
follows by an  argument similar to that of part a), using 
Proposition 4  instead of Proposition 6. This completes the 
proof. Q .E.D. 

For any function f of entropy H, one can construct a  
program of length I 2  H+o(N) to generate the truth table 
r(f) by specifying the index of f among  all functions of 
entropy H. This shows that the randomness,  like the cost, 
satisfies R(f) I H(f) + o(N). It is also simple to extend 
Theorem 2  and  show that almost all functions of entropy 
H have complexity, cost, and  randomness at least H - 
o(N). This makes deterministic entropy an  essential 
parameter in characterizing a  function. F inally, we note 
that H(f) cannot be  bounded by K(f), C(f), or R(f), 
since simple functions of high entropy exist such as the 
modu lo-two sum. 

IV. APPROXIMATION 

In this section, the complexity results of the previous 
section are discussed in a  probabilistic context. An error- 
tolerant version of the complexity and  cost measures are 
defined and  related to information-theoretic entropy and  
decision reliability. 

Consider the case where the Boolean variables si,. . . , sN 
become random variables under  some probability measure. 
Let S be  a  fixed nonempty N-subset of the universal set 
U. Define S to be  the set {O,l}s of all binary N-tuples 
indexed by the Boolean variables si; . a, sN of S. Let p  be  
a  probability measure on  $. This measure induces a  prob- 
ability distribution on  all Boolean functions f whose sup- 
port T(f) is a  subset of S, that is, these functions become 
(dependent)  random variables under  this measure. We  
shall refer to the pair (S, p) as the ensemble. 

Suppose that we can afford a  nonzero probability of 
error S in implementing the function f. It is conceivable 
that we can reduce the complexity (cost) of f by ap- 

proximating f by another function g  which is less com- 
plex (costly) than, but does not often differ from, f. 

Definition: The  &complexity and &cost of a  Boolean 
function f, denoted by K,(f) and C,(f), respectively, are 
defined for 0  < 6  < 1  by 

K,(f) = m in {Kk)lPr(f + d  2  6) 
G(f) = tin NdlPr(f# d  5  8). 

Since the m inimization doma in includes f itself, it fol- 
lows that K,(f) < K(f). Also, it is obvious that for 
6  2  l/2, K,(f) = 0  for any function f since one  of the 
two constant functions g  = 0  or g  = 1  will be  in the 
m inimization doma in. We  now investigate the (possibility 
and)  conditions for having K,(f) significantly less than 
K(f) for small 6. The  same remarks apply to C,(f) and  
can be  extended to a  similar definition of R*(f). 

A. Low-Entropy Case 

We start with a  definition that links deterministic en- 
tropy to information-theoretic entropy. 

Definition: The  a-entropy H,(S) is defined for 0  < 6  < 1  
by 

H,(S) = logmin { ]S,]JS, c S, p(S,) 2  1 - S}. 

In other words, H, is the m inimum number  such that S 
can be  partitioned into &USA (T for typical and  A for 
atypical), where IS,] 5  2Ha and  p(S,) I S. H,(S) be- 
comes very significant when the partition is such that S, 
has most of the probability (small 6) while S, has most of 
the points (small H,). In pattern recognition, for example, 
the set of mean ingful images is an  exceedingly small subset 
of the set of all “two-dimensional data arrays.” 

For many probability measures of interest [28], such as 
the independent identically distributed si, H, is asymptot- 
ically equal  to Shannon’s entropy H of the ensemble: 

1  
H= c p(s)log- 

SGS p(s). 
PC”)+0 

We now apply Theorem 2  and  relate H, to K, and C,. 
For any function f, no  matter how complex, we argue that 
G(f) < f&(S) + o(N) and  K,(f) 5  (f&(S) + W /2 
+ o(N). This is because we can construct a  function g  
satisfying Pr (f #  g) I 6  and  also having C(g) I H,(S) 
+ o(N) and  K(g) I (H,(S) + N)/2 + o(N). To  do  this, 
we partition S into &USA according to the definition of 
H8. If f is always 0  or always 1  for the states in S,, we 
take the approximating function g  to be  a  constant 0  or 1, 
respectively. Since Pr ( f f g) _< p(S,) I 6  and  K(g) = 
C(g) = 0, the result follows. On  the other hand, if f 
assumes both values 0  and  1  for the states in S,, then 
define the function g  to be  equal  to f for the states in S, 
and  equal  to 0  for the states in S,. Again, Pr (f #  g) I 
p(S,) I S. Furthermore, g  assumes the value 1  in at most 
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2H8 - 1 states in S. Hence the deterministic entropy of g 
is at most H8 and the result follows from Theorem 2. 

V. FALSE ENTROPY 

B. High-Entropy Case 

The reliable low-cost approximation of all functions in 
the low-entropy case may persuade us to look for a good 
approximation of any function in general. Conceivably, 
even in the maximum-entropy case (uniform probability 
measure), some other technique for constructing g will 
work. We will show that this is not the case. 

Definition: A d-error pattern e is any Boolean function 
satisfying Pr (e = 1) I 6. 

Each b-error pattern can be thought of as the locations 
in the Karnaugh map where an error is made in approxi- 
mating a function f by a function g (with error probabil- 
ity at most 8). The following theorem describes how 
approximation affects the complexity and cost of most 
functions. 

Theorem 3: Let the probability measure on S be uni- 
form. Given E > 0 and 0 < 6 < 1, the following hold. a) If 
6 2 l/2, then K,(f) = 0 for any function f. b) If 6 < l/2, 
a positive integer No (function of e and 6) exists such that 
for N 2 N,,, the fraction of functions f having K,(f) I 
K(f) - eN is less than e. c) The same results apply to the 
S-cost function C,( f ). 

Proof: We shall use Lemma 2 (Appendix I) and Prop- 
ositions 4 and 6. a) One of the two constant functions 
g = 0 or g = 1 must be in the m inimization domain. Since 
K(g) = 0 for both functions, the result follows. 

b) By Proposition 4, we estimate the number of func- 
tions g of complexity K(g) I (1 - c)N to be at most 
22 N(‘-(c’2’). From the definition of error pattern, it is obvi- 
ous that the function g which approximates some function 
f with error I 6 must satisfy f = g @  e for some S-error 
pattern ‘e. The number of l’s in e is at most S2N since the 
probability measure is uniform. Therefore, by Lemma 2, 
the number of different &error patterns is at most 62N x 
exp (2NH(S)) where H(6) < 1 is the uncertainty function 
(Appendix I) evaluated at 6 < l/2. Hence the number of 
functions f that can be approximated by some function g 
of complexity K(g) I (1 - e)N is at most (22N”m(“2))) 
(62N x exp(2NH(S))), which can be made less than e22N 
by taking N large enough. 

c) The argument is similar to parts a) and b) using 
Proposition 6 instead of Proposition 4. This completes the 
proof. Q.E.D. 

This theorem says that most functions have approxi- 
mately 2 N-1 l’s and 2N-’ O’s scattered in the Karnaugh 
map, and no way exists to reduce the complexity or the 
cost significantly by placing “don’t care’s ” in less than 
half the blocks of the map. For these functions, it is not 
worth saving when we want to implement them. Although 
Theorem 3 assumes uniform probability distribution, a 
similar statement can be proved for some nonuniform 
distributions by considering only the typical blocks in the 
Karnaugh map. 

In a typical pattern recognition problem, a point in the 
ensemble S (an image, or a binary matrix) is given, and it 
is required to decide whether or not this image belongs to 
a certain class. The optimal classification decision D is a 
Boolean function of the Boolean variables in S (the pixels). 
Typically, the entropy H, is much smaller than N, and the 
reliable implementation cost of D is within H, I/I o(N). 
Therefore, the entropy of S is crucial to the cost, and one 
should use whatever information may be available to re- 
duce the entropy. 

Preprocessing procedures to reduce the entropy in pat- 
tern recognition include segmentation and normalization. 
These procedures can be formalized in terms of the aver- 
age mutual information and the entropy. 

Definition:- An entropy-re$ction procedure is a mapping 
from S to S such that I(S; D) = I(S; D) and H(S) < 
H(S)- 

In words, we retain all the information relevant to the 
decision but discard some of the irrelevant variations in 
the ensemble. This step uses the properties of the pattern 
which are known to us to get rid of the false entropy, that 
is, the variations in the pattern which are not random. For 
example, all images which are rotated versions of one 
another usually belong to the same class. When we normal- 
ize an image such that its contents have a specific orienta- 
tion, we get rid of the false entropy associated with rota- 
tional variations. Such a procedure usually takes linear or 
polynomial computation time, but it reduces the computa- 
tion demand tremendously because it decrements the ex- 
ponent in the total cost. 

False entropy is not an absolute measure, it depends on 
what is considered to be a regularity. It is possible to 
formalize the concept based on universal Turing machines. 
The randomness of a function of entropy H can, in princi- 
ple, be as high as max { R(g)lH(g) = H}. If it is less, the 
difference will be due to the (partial) structure or regular- 
ity of the function. 

Definition: Let S be a fixed N-subset of U. The false 
entropy of a function f, whose support is a subset of S, is 
defined by 

A(f 1 = max {R(g)lT(g) c S, H(g) = H(f >) - R(f >. 

The units of A(f) are bits. 
Notice that max{R(g)lT(g) c S, H(g) = H(f)} is the 

maximum randomness (algorithmic information) for this 
level of entropy (combinatorial information). This maxi- 
mum is close to R(g) of most functions g of entropy = 
H( f ) and is approximately equal to H( f ). Hence A(f) = 0 
for most functions. However, for highly structured func- 
tions of maximum entropy such as the modulo-two sum, 
practically all the entropy is false; A(f) = N. In practical 
problems, preprocessing steps take care of the partial 
structure in the problem. The resulting ensemble is then 
expected to meet the bounds of Theorems 1, 2, and 3, and 
any system that will do the recognition task reliably will 
have to meet the cost requirements. A pattern recognition 
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system that solves problems with entropy H must cost the 
order of 2H cells. 
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APPENDIX I 
LEMMAS1,2,AND3 

The following general (and not particularly strong) lemmas are 
used to prove the main propositions and theorems. 

The uncertainty (entropy) function [24] is defined by H(x) = 
x log(l/x) + (1 - x)logl/(l - x) for 0  < x < 1 and H(0) = 
H(1) = 0. The following lemma estimates H(x). 

Lemma 1: For 0 < x < 1, we have x log(l/x) < H(x) < 
x(2 + log(l/x)). 

Proof: The LHS follows from the positivity of 
(1 - x)logl/(l - x). For the RHS, we estimate this term. 
(1 - x) log l/(1 - x) = (1 - x)/n 2 In l/(1 - x), where In de- 
notes the natural logarithm. Since In 2 is greater than 0.5, we have 
the overestimate 2(I - x)lnl/(l - x) = 2(1 - x)(x + (x2/2) 
+ (x3/3) +  . . . ). This is less than 2(1 - x)(x + x2 + x3 
+ . .. ) = 2(1 - x)x(1 + x + x2 + . . . ). The expansion re- 
duces to (1 - x)-l, and therefore we get the final estimate 2x 
and the RHS follows. 

Stirling’s formula [14] estimates n! for n  > 0 by &(n/e)“, 
where 01 is between 2 and e (converging to fi). The following 
lemma uses this formula to estimate : Similar estimates are 
found in [20, app. A]. 

( 1  

Lemma 2: Let ( 1  : = n!/r!( n  - r)!. a) If 0  < r < n, then 
(1/4fi)2”“(‘I”) I F  I 2”‘f(r’n). b) If 0  < t < n/2, then ( 1  
(1/4J7)2 - nf’(r/rl) <  -p=, 

( 1  
‘: 5  tyH(‘/“). 

Proof: We manipulate ( :) using Stirling’s formula. a) 

( 1  
1 n = r r!( n  - r)! 

II; I( 

n  l/2 ( n/e) " =- 
a2a3  r( n  i r) ( r/e)r(( n  - r)/e)+’ I 

where opt, 0~~) a3 are between 2 and e. It is simple to check that 
(Y~/(Y~(Y~ is between l/4 and l/J?. Also, (n/r(n - r))‘12  is 
between l/ fi and a. Therefore, their product is between l/4& 
and 1. We  now evaluate (( n/e)“/(r/e)l((n - r)/e)‘-‘). This 
can be rearranged as ((r/n)‘((n - r)/n)‘f-r)-l. Taking the loga- 
rithm, we get nH( r/n) and part a) follows by exponentiation. 

b) The LHS considers only the last term in the summation and 
applies the LHS in a). The RHS overestimates each term by the 
last term (since 0 < t < n/2) and then applies the RHS in b). 
This completes the proof. Q.E.D. 

The following lemma estimates the number of different multi- 
sets of a  special class. 

Lemma 3: Let pM be the number of different multisets X, = 
(n,,.. ., nQ) where the n, are positive integers satisfying CE i 2”~ 
= 2M for the positive integer M. Then pM 5 22M. 

Proof We claim that any X,,, can be written as the union 
of two x,, except X,, i = (M + 1). To see this, we take the 
X ,+I+1 and replace each two l’s in it by a single 2 (conceivably 
leaving a single 1 at the end). We  next replace each two 2’s by a 
single 3 and continue in this fashion until we replace the M - l’s 
by M’s, This procedure must yield exactly (M, M) because at 
most a single 1, a  single 2,. . . , a  single M - 1  are left, and these 
cannot contribute to Cj?=i2”1 more than 2M - 2. Therefore, we 
go back and decompose the two M’s getting two X,,,, which 
proves the claim. Hence pM+, is at most 1 + ( pw( pM + 1)/2). 
For pu 2 2, which holds for M 2  2, this is at most pz. The 
proof now follows by induction after overestimating pi and p2  
by 22’ and 2”, respectively. Q.E.D. 

In [ll], an asymptotic estimate for pM is given, but the result 
derived there could not be used to improve on main results. 

APPENDIXII 
PROOFSOFPROPOSITIONS 1,2, AND 3  

These propositions are concerned with the properties of nor- 
mal-form input configurations. 

Proposit ion 1: Let C = (S, , . . . , S,) be a configuration which 
admits N(C) Boolean functions. Let r(C), I(C)( =  L), d(C) be 
the rank, length, and degree of C, respectively. Then, a) d(C) I: 
log10 N(C) I max(l(C), d(C)) + log(max(Z(C), d(C)) + 1); 
b) J” r(C) I loglog iv(C) I r(C). 

Proof: We first maintain that log log N(C) exists (and is 
nonnegative) by observing that N(C) 2 2 since all configura- 
tions admit the two constant functions (including the empty 
configuration by definition). All statements are trivial for the 
empty configuration, and now assume that C is nonempty. a) Let 
S,” be a component of maximal cardinality in the configuration. 
By definition, ]SA = d(C). Now C can simulate at least the 22d’C1 
different functions whose support is a  subset of S, The LHS 
inequality in a) follows by taking the logarithm twice. To prove 
the RHS inequality,. we observe that the number of different 
mappings that can be simulated by the primary gate of S, is 22’s” 
and the number of mappings that can be simulated by the 
secondary gate in terms of its inputs is 22”c’. Therefore, N(C) is 
at most exp (Z:!?J21sti + 2’(c)). We  increase this number by sub- 
stituting for each IS,] and for 1(C) by M = max(l(C), d(C)). 
This gives N(C) < 2(“+1)2M, which yields the RHS inequality 
in a). 

b) The support T(C) contains the support T(f) of any func- 
tion f admitted by C. Since T(C) has r(C) Boolean variables, 
N(C) is at most 22”‘c’. Taking the logarithm twice yields the RHS 
inequality in b). Now let C* = (ST,. . . , S,*, ) be the configura- 
tion defined by ST = Si and S,* = S, \ U):‘,S, (if nonempty; 
otherwise, skip and relabel) for i = 2,. . . , L* (L* I L  We 
shall prove the LHS inequality in b) for C*. If d(C*) > d- r( C*) , 
we are done (LHS inequality in a)), so we assume that d(C*) 
< dm. However, Z(C*)d(C*) 2  r(C*) (since the r(C*) 
variables are contained in the I(C*) components and each com- 
ponent has at most d(C*) variables). Therefore, I(C*) 
> ,/m. Since the S,* are disjoint and nonempty, C* can 
simulate at least exp 2m functions (those simulated by the 
secondary gate when each primary gate “passes” a distinct 
variable). Taking the logarithm of N(C*) twice, we get the LHS 
inequality in b) for C*. By construction, each variable in the S, is 
contained in some S,* and vice versa; hence r(C*) =  r(C). Also, 
C* is a reduced form of C, which implies that C admits all the 
functions admitted by C*. Therefore, N(C) 2 N(C*) and the 
LHS inequality in b) follows. This completes the proof. Q.E.D. 
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Proposition 2: If a configuration C = (S,; . ., S,) is not re- 
dundant, then for all subsets X of (1; . ., L}, the following 
condition holds: 

Proof: We shall use Hall’s theorem [22] about the existence 
of a system of distinct representatives (SDR), which is a collec- 
tion of distinct elements such that each element belongs to 
(represents) a specific subset within a given collection of subsets. 
Suppose that the condition does not hold. Then a subset h of 
(1,. . .> L} exists for which lU,,,S,l < 1x1. Let A be a minimal 
subset satisfying this condition. Let j be any element of h (A is 
nonempty since IX] > 0). Let h, = X \ { j }. Since h is minimal, 
we have IU, E x, S,l 2 JXjl. However, ]A,] = ]A] - 1 and IX] > 
IU~X~,I 2 IUEX ,,$I. This forces both lJ, E xS, and Ui E x S, to 
have cardinality JX] - 1 (= IX,]) and forces SJ to be contained in 
lJi E h, S,. By minimality of A again, the sets S, with i in Xj 
satisfy the Hall condition for an SDR. This SDR has IX,] 
elements and so does UiEA S,. Hence, the SDR covers all the 
elements of the S, with i in’ X,. Now S, is a subset of U, E xjSi, 
and we can omit it without diminishing F(C) since the SDR can 
be passed by the other primary gates to the secondary gate which 
can then implement any function of the variables in U, EXSi. 
Hence C is redundant and the proof is complete. Q.E.D. 

Proposition 3: a) If C is a configuration with I(C) > r(C), 
then a configuration C* with I(C*) I r(C*) exists which is 
equivalent to C. b) Let S be an N-subset of the universal set U. 
At most 2NZ possible values for F(C) exist over all configurations 
C whose support T(C) is a subset of S. 

Proof a) C must be redundant since 1(C) > r(C) means 
that the condition of Proposition 2 does not hold for C with 
x = {l;.., I(C)}. We keep omitting the unnecessary 3 until we 
get I(C*) 5 r(C*). 

b) From part a), we need to consider only those configurations 
with I(C) I N. Since d(C) I N, we can now enumerate the 
number of different C’s. Each component can be assigned 2N 
different subsets of S, and at most N such components exist. 
Therefore, the total number of different configurations is at most 
JJfi=12N = 2NZ. Since the different F(C)‘s can be at most that 
many, the proof follows. Q.E.D. 

APPENDIX III 
PROOFSOFPROPOSITIONS~,~,AND 6 

These propositions are concerned with the properties of the 
complexity and cost measures. 

Proposition 4: Let Fs be the set of all Boolean functions f 
whose support is a subset of a nonempty N-set S. Define 
NK=]{f~Fs]K(f)<K}].ForO~K~N,wehave 

K-l<loglogN,1K+21ogN. 

Proof: We shall use Proposition 3. Obviously, all functions f 
depending on at most 1 K ] variables have K(f) 5 K. There are 
at least 22Km’ such functions in Fs and the LHS inequality 
follows by taking the logarithm twice. From Proposition 3, at 
most 2N2 different F(C)‘s exist with T(C) a subset of S. Each 
function f of complexity K(f) I K must belong to an F(C) 
whose cardinality is at most 22K. Therefore, NK I 2N222K and the 
RHS inequality follows by taking the logarithm twice. This 
completes the proof. Q.E.D. 

Proposition 5: Let f be a Boolean function of complexity 
K(f) = K. Then, a) any normal form implementation of f costs 
at least 2K cells, and b) a normal form implementation off exists 
which costs at most 2K+iog(1+ K, cells. 

Proof: We shall use Propositions 1 and 2. a) Let C = 
(S,,.. ., S,) be a configuration that admits f. From the defini- 
tion of K( f ), 22K I N(C). Let n,; . +, nL be the cardinalities of 
s,; . ., S,-, respectively (number of inputs to each primary gate). 
Now N(C) I exp (2L + C~=,2”~) (same argument as in Proposi- 
tion 1). By taking the logarithm, we get part a). 

b) Let C be a minimal configuration (with respect to N(C)) 
that admits f. If C is redundant, omit unnecessary S, until 
the condition of Proposition 2 is satisfied. We show that 
max (f(C), d(C)) I K. Suppose not. If d(C) is greater than K, 
then C admits more than 22K functions using the primary gate 
with d(C) inputs; else, if 1(C) is greater than K, then by passing 
an SDR from the primary gates to the secondary gate, C also 
admits more than 22K functions, a contradiction. Hence the cost 
of C is at most (K + 1)2K cells and b) follows by rearrangement. 

Q.E.D. 

Proposition 6: Let F, be the set of all Boolean functions f 
whose support is a subset of a nonempty N-set S. Define 
iK=]{f~Fs]C(f)~K}].ForO~K~N,wehave 

Proof: Since 1 K ] I N, there are at least exp 2 lK’ func- 
tions that can be simulated by a single universal gate of 1 K ] 
inputs. The LHS follows since 1 K] > K - 1. For the RHS, we 
can take K 2 1 since the statement is clear for K < 1 (constant 
functions only). Let M  = [K] . We overestimate fiK by i?,,. To 
do this, we shall estimate the number of different ways we can 
choose a collection of gates given the total cost of 2M cells, the 
number of circuits that can be formed using a given collection of 
gates, and the number of Boolean functions that can be simu- 
lated on a given circuit. We restrict the gates to have a positive 
number of inputs, since zero-input gates contribute only the 
constant functions which can be simulated otherwise. Restricting 
the cost to be exactly 2M cells is justified by adding l-input gates 
(all costs involved are even) without using their outputs. 

1) A collection of gates is isomorphic to a multiset of numbers 
(the number of inputs in each gate). The number of multisets 
(n,,. . ., na ) with positive ni satisfying Xy=r2”1 = 2M (i.e., whose 
cost is 2M cells) is at most 22M by Lemma 3. 

2) Given N Boolean variables xi; . . , xN and calling the 
outputs of the Q gates y,, . + ., ya, we have at most N + Q 
different variables that can be input to each gate. Therefore, for 
each collection of gates with n,; . ., np inputs, we have at most 

l-I< N+Q I 1 
( 1 n, 

possible interconnection schemes or circuits (en- 
tering the same variable twice to the same gate or interchang- 
ing the inputs within a gate cannot increase the functions 
because the gates are universal). By Lemma 2, substituting 
for each term in the product, this number is at most 
exp ((Q + N)E$=IH(n,/Q + N)) where H(x) is the 
uncertainty function defined in Appendix I. Substituting 
for each H using Lemma 1, this number is at most 
exp (<Q + N)C$=l(n,/(Q + N))(2 + lw(Q + N)/n,)). 
Since each n, is at least 1, this number is at most 
exp ((2 + log( Q + N))E$,n,). Subject toZ$=, = 2”, the max- 
imum value of Ce=,n, occurs when all the n, are l’s and is 2Mp’. 
Hence we get the following overestimate: exp ((1 + 
(l/2) log (2’+-’ + N))2”). 
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3) For each of the foregoing circuits, there are II $= r 22”’ ways 
to program the universal gates, and for each of these we have at 
most Q implemented functions out of the Q gates. Hence the 
number of functions that can be implemented on the circuit is at 
most QIIE, exp 2”i, which is less than 22X2M. 

Therefore, from 1, 2, and 3, the number of functions f whose 
support is a  subset of S and can be implemented within cost 2”” 
cells is at most the product of the three estimates, namely, 
exp((4 + (1/2)log(2”-’ + N))2”). Since M < K + 1 and 
also M  I N, this is at most exp ((8 + log(2N-’ + N))2K). 
Since N I 2j’-’ (N is an integer), this is at most 
exp ((8 + log(2N-’ + 2N-‘))2K), which reduces to expexp(K 
+ log(8 + N)), and the proof follows by taking the logarithm 
twice. Q.E.D. 
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