
Outline

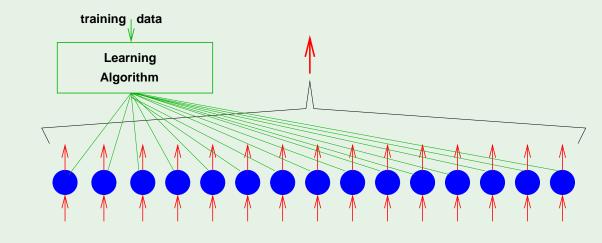
- The map of machine learning
- Bayesian learning
- Aggregation methods
- Acknowledgments

What is aggregation?

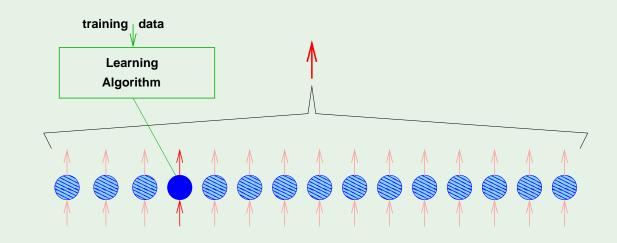
Combining different solutions h_1, h_2, \cdots, h_T that were trained on \mathcal{D} :

Regression: take an average

Classification: take a vote


a.k.a. ensemble learning and boosting

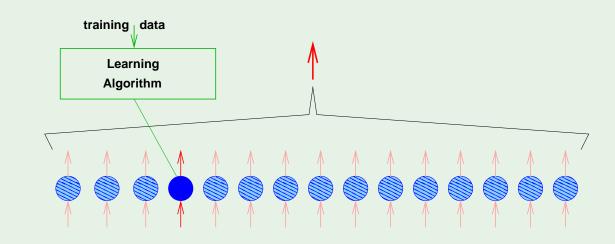
© A Creator: Yaser Abu-Mostafa - LFD Lecture 18



Different from 2-layer learning

In a 2-layer model, all units learn **jointly**:

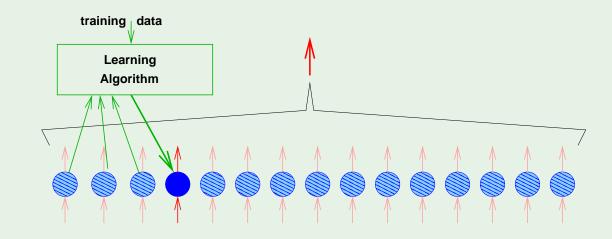
In aggregation, they learn **independently** then get combined:


Two types of aggregation

1. After the fact: combines existing solutions

Example. Netflix teams merging "blending"

2. Before the fact: creates solutions to be combined


Example. Bagging - resampling \mathcal{D}

(C) A Creator: Yaser Abu-Mostafa - LFD Lecture 18

Decorrelation - boosting

Create h_1, \dots, h_t, \dots sequentially: Make h_t decorrelated with previous h's:

Emphasize points in \mathcal{D} that were misclassified

Choose weight of h_t based on $E_{in}(h_t)$

© 🎢 Creator: Yaser Abu-Mostafa - LFD Lecture 18

Blending - after the fact

For regression,
$$h_1, h_2, \cdots, h_T \longrightarrow g(\mathbf{x}) = \sum_{t=1}^T \alpha_t h_t(\mathbf{x})$$

Principled choice of α_t 's: minimize the error on an "aggregation data set" pseudo-inverse

Some α_t 's can come out negative

Most valuable h_t in the blend?