Outline

- The map of machine learning
- Bayesian learning
- Aggregation methods
- Acknowledgments

Probabilistic approach

Extend probabilistic role to all components $P(\mathcal{D} \mid h = f)$ decides which h (likelihood) How about $P(h = f \mid \mathcal{D})$?

The prior

 $P(h = f \mid \mathcal{D})$ requires an additional probability distribution:

$$P(\mathbf{h} = f \mid \mathcal{D}) = \frac{P(\mathcal{D} \mid \mathbf{h} = f) P(\mathbf{h} = f)}{P(\mathcal{D})} \propto P(\mathcal{D} \mid \mathbf{h} = f)$$

$$P(h = f)$$
 is the prior

 $P(h = f \mid D)$ is the **posterior**

Given the prior, we have the full distribution

P(h = f)

Example of a prior

Consider a perceptron: h is determined by $\mathbf{w} = w_0, w_1, \cdots, w_d$

A possible prior on w: Each w_i is independent, uniform over [-1,1]

This determines the prior over h - P(h = f)

Given \mathcal{D} , we can compute $P(\mathcal{D} \mid h = f)$

Putting them together, we get $P(h = f \mid \mathcal{D})$

$$\propto P(h = f)P(\mathcal{D} \mid h)$$

= f

A prior is an assumption

Even the most "neutral" prior:

The true equivalent would be:

If we knew the prior

 \ldots we could compute $P(h = f \mid \mathcal{D})$ for every $h \in \mathcal{H}$

 \implies we can find the most probable h given the data

we can derive $\mathbb{E}(h(\mathbf{x}))$ for every \mathbf{x}

we can derive the error bar for every ${f x}$

we can derive everything in a principled way

When is Bayesian learning justified?

1. The prior is **valid**

trumps all other methods

2. The prior is **irrelevant**

just a computational catalyst