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Probabilistic approach

Extend probabilistic role to all components

P(D | h=f) decides which h

How about P(h = f | D)7
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The prior

P(h = f | D) requires an additional probability distribution:

_ P(D|h=f)P(h=f)

P(h=f|D) D)

x P(D|h=f)P(h=f)

P(h = f) s the prior
P(h = f | D) is the posterior

Given the prior, we have the full distribution
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Example of a prior

Consider a perceptron: h is determined by w = wg, wy, - - - , Wy

A possible prior on w: Each w; is independent, uniform over |[—1, 1]

This determines the prior over h - P(h = f)
Given D, we can compute P(D | h = f)
Putting them together, we get P(h = f | D)

x P(h=f)P(D|h=f)
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A prior Is an assumption

Even the most "neutral” prior:

X is unknown

The true equivalent would be:

X is unknown
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X is random
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If we knew the prior

... we could compute P(h = f | D) for every h € H
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—> we can find the most probable i given the data
we can derive E(h(x)) for every X
we can derive the error bar for every x

we can derive everything in a principled way
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When is Bayesian learning justified?

1. The prior is valid

trumps all other methods

2. The prior is irrelevant

just a computational catalyst
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