Basic RBF model

Each $(\mathbf{x}_n, y_n) \in \mathcal{D}$ influences $h(\mathbf{x})$ based on $\|\mathbf{x} - \mathbf{x}_n\|$

Standard form:

$$h(\mathbf{x}) = \sum_{n=1}^{N} w_n \exp\left(-\gamma \|\mathbf{x} - \mathbf{x}_n\|^2\right)$$
basis function

The learning algorithm

Finding
$$w_1, \cdots, w_N$$
:

Finding
$$w_1, \cdots, w_N$$
:
$$h(\mathbf{x}) = \sum_{n=1}^N w_n \exp\left(-\gamma \|\mathbf{x} - \mathbf{x}_n\|^2\right)$$

based on
$$\mathcal{D}=(\mathbf{x}_1,y_1),\cdots,(\mathbf{x}_N,y_N)$$

$$E_{\mathrm{in}}=0$$
: $h(\mathbf{x}_n)=\mathbf{y}_n$ for $n=1,\cdots,N$:

$$\sum_{m=1}^{N} w_m \exp\left(-\gamma \|\mathbf{x}_n - \mathbf{x}_m\|^2\right) = y_n$$

The solution

$$\sum_{m=1}^{N} w_m \exp\left(-\gamma \|\mathbf{x}_n - \mathbf{x}_m\|^2\right) = y_n$$
 N equations in N unknowns

$$\underbrace{\begin{bmatrix} \exp(-\gamma \|\mathbf{x}_{1} - \mathbf{x}_{1}\|^{2}) & \dots & \exp(-\gamma \|\mathbf{x}_{1} - \mathbf{x}_{N}\|^{2}) \\ \exp(-\gamma \|\mathbf{x}_{2} - \mathbf{x}_{1}\|^{2}) & \dots & \exp(-\gamma \|\mathbf{x}_{2} - \mathbf{x}_{N}\|^{2}) \\ \vdots & \vdots & \vdots & \vdots \\ \exp(-\gamma \|\mathbf{x}_{N} - \mathbf{x}_{1}\|^{2}) & \dots & \exp(-\gamma \|\mathbf{x}_{N} - \mathbf{x}_{N}\|^{2}) \end{bmatrix}}_{\Phi} \underbrace{\begin{bmatrix} w_{1} \\ w_{2} \\ \vdots \\ w_{N} \end{bmatrix}}_{\mathbf{\tilde{w}}} = \underbrace{\begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{N} \end{bmatrix}}_{\mathbf{\tilde{y}}}$$

If Φ is invertible, $\|\mathbf{w} = \Phi^{-1}\mathbf{y}\|$

$$\mathbf{w} = \Phi^{-1}\mathbf{y}$$

"exact interpolation"

5/20

The effect of γ

$$h(\mathbf{x}) = \sum_{n=1}^{N} w_n \exp\left(-\gamma \|\mathbf{x} - \mathbf{x}_n\|^2\right)$$

RBF for classification

$$h(\mathbf{x}) = \operatorname{sign}\left(\sum_{n=1}^{N} w_n \exp\left(-\gamma \|\mathbf{x} - \mathbf{x}_n\|^2\right)\right)$$

Learning: ∼ linear regression for classification

$$s = \sum_{n=1}^{N} w_n \exp\left(-\gamma \|\mathbf{x} - \mathbf{x}_n\|^2\right)$$

Minimize $(s-y)^2$ on \mathcal{D} $y=\pm 1$

$$h(\mathbf{x}) = \operatorname{sign}(s)$$

Relationship to nearest-neighbor method

Adopt the y value of a nearby point:

similar effect by a basis function:

© 🎢 Creator: Yaser Abu-Mostafa - LFD Lecture 16