Outline

• Maximizing the margin

• The solution

• Nonlinear transforms

Better linear separation

Linearly separable data

Different separating lines

Which is best?

Two questions:

1. Why is bigger margin better?

2. Which w maximizes the margin?

Remember the growth function?

All dichotomies with any line:

Dichotomies with fat margin

Fat margins imply fewer dichotomies

Finding w with large margin

Let \mathbf{x}_n be the nearest data point to the plane $\mathbf{w}^{\mathsf{T}}\mathbf{x} = 0$. How far is it?

2 preliminary technicalities:

- 1 Normalize w $|\mathbf{w}^{\mathsf{T}}\mathbf{x}_n| = 1$
- 2. Pull out w_0 : $\mathbf{w} = (w_1, \cdots, w_d)$ apart from bThe plane is now $|\mathbf{w}^{\mathsf{T}}\mathbf{x} + \mathbf{b} = 0|$ (no x_0)

Computing the distance

The distance between \mathbf{x}_n and the plane $\mathbf{w}^{\mathsf{T}}\mathbf{x} + b = 0$ where $|\mathbf{w}^{\mathsf{T}}\mathbf{x}_n + b| = 1$

The vector \mathbf{w} is \perp to the plane in the \mathcal{X} space:

b| = 1

• **x**_n

د،

and the distance is ...

Distance between \mathbf{x}_n and the plane:

Take any point \mathbf{x} on the plane

Projection of $\mathbf{x}_n - \mathbf{x}$ on \mathbf{w}

$$\hat{\mathbf{w}} = \frac{\mathbf{w}}{\|\mathbf{w}\|} \implies \text{distance} = \left|\hat{\mathbf{w}}^{\mathsf{T}}(\mathbf{x}_n - \mathbf{x})\right|$$

distance = $\frac{1}{\|\mathbf{w}\|} |\mathbf{w}^{\mathsf{T}}\mathbf{x}_n - \mathbf{w}^{\mathsf{T}}\mathbf{x}| = \frac{1}{\|\mathbf{w}\|} |\mathbf{w}^{\mathsf{T}}\mathbf{x}_n + b - \mathbf{w}^{\mathsf{T}}\mathbf{x} - b| = \frac{1}{\|\mathbf{w}\|}$

ŵ

The optimization problem

Maximize
$$\frac{1}{\|\mathbf{w}\|}$$

subject to $\min_{n=1,2,...,N} |\mathbf{w}^{\mathsf{T}}\mathbf{x}_n + b| = 1$
Notice: $|\mathbf{w}^{\mathsf{T}}\mathbf{x}_n + b| = y_n$
Minimize $\frac{1}{2} \mathbf{w}^{\mathsf{T}}\mathbf{w}$
subject to $y_n (\mathbf{w}^{\mathsf{T}}\mathbf{x}_n + b) \ge 1$ for $n = 1, 2, ...,$

