Validation versus regularization

In one form or another, $E_{
m out}(h) = E_{
m in}(h) + {
m overfit}$ penalty

Regularization:

$$E_{\mathrm{out}}(h) = E_{\mathrm{in}}(h) + \underbrace{\text{overfit penalty}}_{\text{regularization estimates this quantity}}$$

Validation:

$$E_{\rm out}(h) = E_{\rm in}(h)$$
 + overfit penalty validation estimates this quantity

Analyzing the estimate

On out-of-sample point (\mathbf{x},y) , the error is $\mathbf{e}(h(\mathbf{x}),y)$

Squared error:
$$(h(\mathbf{x}) - y)^2$$

Binary error:
$$\llbracket h(\mathbf{x}) \neq y \rrbracket$$

$$\mathbb{E}\left[\mathbf{e}(h(\mathbf{x}),y)\right] = E_{\text{out}}(h)$$

$$\operatorname{var}\left[\mathbf{e}(h(\mathbf{x}),y)\right] = \sigma^2$$

From a point to a set

On a validation set $(\mathbf{x}_1,y_1),\cdots,(\mathbf{x}_K,y_K)$, the error is $E_{\mathrm{val}}(h)=rac{1}{K}\sum_{k=1}^{K}\mathbf{e}(h(\mathbf{x}_k),y_k)$

$$\mathbb{E}\left[E_{\mathrm{val}}(h)
ight] = rac{1}{K} \sum_{k=1}^{K} \mathbb{E}\left[\mathbf{e}(h(\mathbf{x}_k), y_k)
ight] = E_{\mathrm{out}}(h)$$

$$\operatorname{var}\left[E_{\operatorname{val}}(h)
ight] = rac{1}{K^2} \sum_{k=1}^K \operatorname{var}\left[\mathbf{e}(h(\mathbf{x}_k), y_k)
ight] = rac{\sigma^2}{K}$$

$$E_{\mathrm{val}}(h) = E_{\mathrm{out}}(h) \pm O\left(\frac{1}{\sqrt{K}}\right)$$

K is taken out of N

Given the data set
$$\mathcal{D}=(\mathbf{x}_1,y_1),\cdots,(\mathbf{x}_N,y_N)$$

$$\underbrace{K \text{ points}}_{\mathcal{D}_{val}} \rightarrow \text{ validation } \underbrace{N-K \text{ points}}_{\mathcal{D}_{train}} \rightarrow \text{ training}$$

$$O\left(\frac{1}{\sqrt{K}}\right)$$
: Small $K \implies$ bad estimate Large $K \implies$?

© M Creator: Yaser Abu-Mostafa - LFD Lecture 13

K is put back into N

$$egin{array}{ccccc} {\cal D} & \longrightarrow & {\cal D}_{
m train} \cup {\cal D}_{
m val} \ \downarrow & & \downarrow & \downarrow \ N & N-K & K \end{array}$$

$$\mathcal{D} \implies g \qquad \mathcal{D}_{ ext{train}} \implies g^-$$

$$E_{\mathrm{val}} = E_{\mathrm{val}}(g^{-})$$
 Large $K \implies$ bad estimate!

Rule of Thumb:

$$K = \frac{N}{5}$$

Why 'validation'

 $\mathcal{D}_{ ext{val}}$ is used to make learning choices

If an estimate of $E_{
m out}$ affects learning:

the set is no longer a **test** set!

It becomes a validation set

© A Creator: Yaser Abu-Mostafa - LFD Lecture 13

What's the difference?

Test set is unbiased; validation set has optimistic bias

Two hypotheses h_1 and h_2 with $E_{
m out}(h_1)=E_{
m out}(h_2)=0.5$

Error estimates \mathbf{e}_1 and \mathbf{e}_2 uniform on [0,1]

Pick $h \in \{h_1, h_2\}$ with $\mathbf{e} = \min(\mathbf{e}_1, \mathbf{e}_2)$

 $\mathbb{E}(\mathbf{e}) < 0.5$ optimistic bias