The polynomial model

 $\mathcal{H}_{\mathbb{Q}}$: polynomials of order Q

linear regression in ${\mathcal Z}$ space

$$\mathbf{z} = egin{bmatrix} 1 \ L_1(x) \ dots \ L_Q(x) \end{bmatrix} \qquad \mathcal{H}_{\mathbb{Q}} = \left\{ \sum_{q=0}^{Q} \ w_q \ L_q(x)
ight\}$$

Legendre polynomials:

Unconstrained solution

Given
$$(x_1,y_1),\cdots,(x_N,y_n) \longrightarrow (\mathbf{z}_1,y_1),\cdots,(\mathbf{z}_N,y_n)$$

Minimize
$$E_{\mathrm{in}}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{w}^{\mathsf{T}} \mathbf{z}_n - y_n)^2$$

Minimize
$$\frac{1}{N} \left(\mathbf{Z} \mathbf{w} - \mathbf{y} \right)^{\mathsf{T}} (\mathbf{Z} \mathbf{w} - \mathbf{y})$$

$$\mathbf{w}_{\text{lin}} = (\mathbf{Z}^{\mathsf{T}}\mathbf{Z})^{-1}\mathbf{Z}^{\mathsf{T}}\mathbf{y}$$

Constraining the weights

Hard constraint: \mathcal{H}_2 is constrained version of \mathcal{H}_{10} with $w_q=0$ for q>2

Softer version: $\sum_{q=0}^{Q} w_q^2 \leq C$ "soft-order" constraint

Minimize $\frac{1}{N} (\mathbf{Z} \mathbf{w} - \mathbf{y})^{\mathsf{T}} (\mathbf{Z} \mathbf{w} - \mathbf{y})$

subject to: $\mathbf{w}^{\mathsf{T}}\mathbf{w} \leq C$

Solution: \mathbf{w}_{reg} instead of \mathbf{w}_{lin}

Solving for w_{reg}

Minimize
$$E_{\rm in}(\mathbf{w}) = \frac{1}{N} \left(\mathbf{Z} \mathbf{w} - \mathbf{y} \right)^{\mathsf{T}} (\mathbf{Z} \mathbf{w} - \mathbf{y})$$
 subject to: $\mathbf{w}^{\mathsf{T}} \mathbf{w} \leq C$

$$abla E_{
m in}(\mathbf{w}_{
m reg}) \propto -\mathbf{w}_{
m reg}$$

$$= -2 \frac{\lambda}{N} \mathbf{w}_{
m reg}$$

$$\nabla E_{\rm in}(\mathbf{w}_{\rm reg}) + 2\frac{\lambda}{N}\mathbf{w}_{\rm reg} = \mathbf{0}$$

Minimize
$$E_{\mathrm{in}}(\mathbf{w}) + \frac{\lambda}{N}\mathbf{w}^{\mathsf{T}}\mathbf{w}$$

Augmented error

Minimizing
$$E_{\mathrm{aug}}(\mathbf{w}) = E_{\mathrm{in}}(\mathbf{w}) + \frac{\lambda}{N}\mathbf{w}^{\mathsf{T}}\mathbf{w}$$

$$= \frac{1}{N} (\mathbf{Z} \mathbf{w} - \mathbf{y})^{\mathsf{T}} (\mathbf{Z} \mathbf{w} - \mathbf{y}) + \frac{\lambda}{N} \mathbf{w}^{\mathsf{T}} \mathbf{w}$$
 unconditionally

- solves -

Minimizing
$$E_{\rm in}(\mathbf{w}) = \frac{1}{N} \left(\mathbf{Z} \mathbf{w} - \mathbf{y} \right)^{\mathsf{T}} (\mathbf{Z} \mathbf{w} - \mathbf{y})$$

subject to:
$$\mathbf{w}^\mathsf{T}\mathbf{w} \leq C$$

← VC formulation

The solution

$$E_{\mathrm{aug}}(\mathbf{w}) = E_{\mathrm{in}}(\mathbf{w}) + \frac{\lambda}{N}\mathbf{w}^{\mathsf{T}}\mathbf{w}$$

$$= \frac{1}{N} \left((\mathbf{Z} \mathbf{w} - \mathbf{y})^{\mathsf{T}} (\mathbf{Z} \mathbf{w} - \mathbf{y}) + \lambda \mathbf{w}^{\mathsf{T}} \mathbf{w} \right)$$

$$\nabla E_{\rm aug}(\mathbf{w}) = \mathbf{0}$$

$$\Longrightarrow$$

$$\Longrightarrow Z^{\mathsf{T}}(Z\mathbf{w} - \mathbf{y}) + \lambda \mathbf{w} = \mathbf{0}$$

$$\mathbf{w}_{\text{reg}} = (\mathbf{Z}^{\mathsf{T}}\mathbf{Z} + \lambda \mathbf{I})^{-1} \mathbf{Z}^{\mathsf{T}}\mathbf{y}$$

(with regularization)

as opposed to

$$\mathbf{w}_{\text{lin}} = (\mathbf{Z}^{\mathsf{T}}\mathbf{Z})^{-1}\mathbf{Z}^{\mathsf{T}}\mathbf{y}$$

(without regularization)

The result

Minimizing
$$E_{\mathrm{in}}(\mathbf{w}) + \frac{\lambda}{N} \, \mathbf{w}^{\mathsf{T}} \mathbf{w}$$
 for different λ 's:

overfitting

 \longrightarrow

 \longrightarrow

 \longrightarrow

 \longrightarrow

underfitting