Outline

What is overfitting?

• The role of noise

• Deterministic noise

Dealing with overfitting

Illustration of overfitting

Simple target function

5 data points- **noisy**

4th-order polynomial fit

 $E_{
m in}=0$, $E_{
m out}$ is huge

Overfitting versus bad generalization

Neural network fitting noisy data

Overfitting: $E_{
m in}\downarrow$ $E_{
m out}\uparrow$

The culprit

Overfitting: "fitting the data more than is warranted"

Culprit: fitting the noise - harmful

Case study

10th-order target + noise

50th-order target

6/23

Two fits for each target

Noisy low-order target

	2nd Order	10th Order
$\overline{E_{ m in}}$	0.050	0.034
$E_{ m out}$	0.127	9.00

Noiseless high-order target

	2nd Order	10th Order
$E_{ m in}$	0.029	10^{-5}
$E_{ m out}$	0.120	7680

An irony of two learners

Two learners O and R

They know the target is 10th order

O chooses \mathcal{H}_{10}

R chooses \mathcal{H}_2

Learning a 10th-order target

We have seen this case

Remember learning curves?

Even without noise

The two learners \mathcal{H}_{10} and \mathcal{H}_2

They know there is no noise

Is there really no noise?

Learning a 50th-order target