How to minimize $E_{\rm in}$

For logistic regression,

$$E_{\text{in}}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \ln \left(1 + e^{-y_n \mathbf{w}^\mathsf{T} \mathbf{x}_n} \right) \qquad \longleftarrow \text{iterative solution}$$

Compare to linear regression:

$$E_{\text{in}}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{w}^{\mathsf{T}} \mathbf{x}_n - y_n)^2 \longleftrightarrow \text{closed-form solution}$$

Iterative method: gradient descent

General method for nonlinear optimization

Start at $\mathbf{w}(0)$; take a step along steepest slope

Fixed step size: $\mathbf{w}(1) = \mathbf{w}(0) + \eta \hat{\mathbf{v}}$

What is the direction $\hat{\mathbf{v}}$?

Formula for the direction $\hat{\mathbf{v}}$

$$\Delta E_{\text{in}} = E_{\text{in}}(\mathbf{w}(0) + \eta \hat{\mathbf{v}}) - E_{\text{in}}(\mathbf{w}(0))$$

$$= \eta \nabla E_{\text{in}}(\mathbf{w}(0))^{\text{T}} \hat{\mathbf{v}} + O(\eta^{2})$$

$$\geq -\eta \|\nabla E_{\text{in}}(\mathbf{w}(0))\|$$

Since $\hat{\mathbf{v}}$ is a unit vector,

$$\hat{\mathbf{v}} = -\frac{\nabla E_{\text{in}}(\mathbf{w}(0))}{\|\nabla E_{\text{in}}(\mathbf{w}(0))\|}$$

Fixed-size step?

How η affects the algorithm:

 η should increase with the slope

© M Creator: Yaser Abu-Mostafa - LFD Lecture 9

Easy implementation

Instead of

$$\Delta \mathbf{w} = \boldsymbol{\eta} \, \hat{\mathbf{v}}$$

$$= -\boldsymbol{\eta} \, \frac{\nabla E_{\text{in}}(\mathbf{w}(0))}{\|\nabla E_{\text{in}}(\mathbf{w}(0))\|}$$

Have

$$\Delta \mathbf{w} = - \boldsymbol{\eta} \nabla E_{\text{in}}(\mathbf{w}(0))$$

Fixed learning rate η