Logistic regression - Outline

- The model
- Error measure
- Learning algorithm

How to minimize E_{in}

For logistic regression,

$$E_{\rm in}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \ln\left(1 + e^{-y_n \mathbf{w}^{\mathsf{T}} \mathbf{x}_n}\right) \qquad \longleftarrow \text{iterative}$$

Compare to linear regression:

$$E_{\text{in}}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{w}^{\mathsf{T}} \mathbf{x}_n - y_n)^2 \qquad \longleftarrow \text{closed-fo}$$

ve solution

orm solution

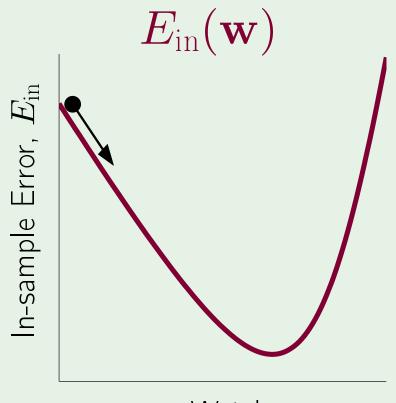
Iterative method: gradient descent

General method for nonlinear optimization

Start at $\mathbf{w}(0)$; take a step along steepest slope

Fixed step size:
$$\mathbf{w}(1) = \mathbf{w}(0) + \eta \hat{\mathbf{v}}$$

What is the direction $\hat{\mathbf{v}}$?



Weights, ${\bf w}$

Formula for the direction $\hat{\mathbf{v}}$

$$\Delta E_{\rm in} = E_{\rm in}(\mathbf{w}(0) + \eta \hat{\mathbf{v}}) -$$

 $= \eta \nabla E_{\text{in}}(\mathbf{w}(0))^{\mathrm{T}} \hat{\mathbf{v}} + O(\eta^2)$

 $\geq -\eta \|\nabla E_{\text{in}}(\mathbf{w}(0))\|$

Since $\hat{\mathbf{v}}$ is a unit vector,

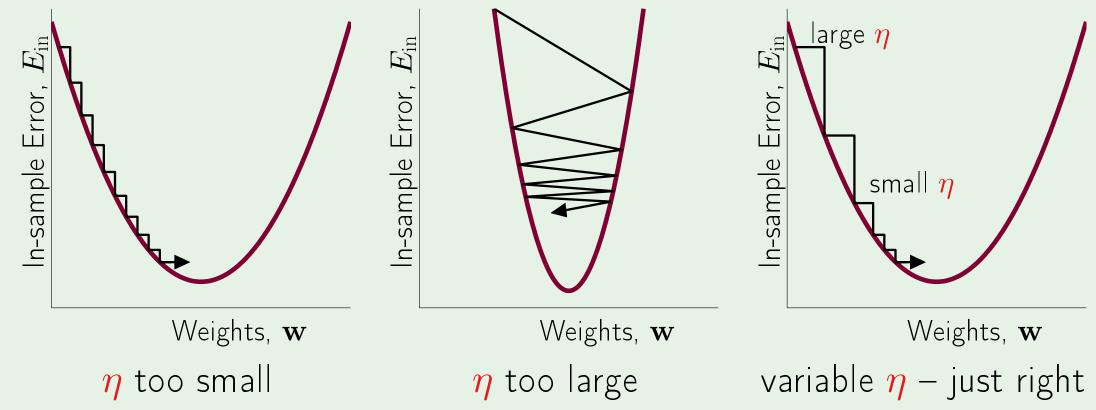
$$\hat{\mathbf{v}} = -\frac{\nabla E_{\text{in}}(\mathbf{w}(0))}{\|\nabla E_{\text{in}}(\mathbf{w}(0))\|}$$

C reator: Yaser Abu-Mostafa - LFD Lecture 9

$E_{\mathrm{in}}(\mathbf{w}(0))$

Fixed-size step?

How η affects the algorithm:



η should increase with the slope

Easy implementation

Instead of

$$\Delta \mathbf{w} = \eta \hat{\mathbf{v}}$$

 $= -\eta \frac{\nabla E_{\text{in}}(\mathbf{w}(0))}{\|\nabla E_{\text{in}}(\mathbf{w}(0))\|}$

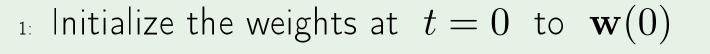
Have

 $\Delta \mathbf{w} = -\eta \nabla E_{\text{in}}(\mathbf{w}(0))$

Fixed learning rate η

© 🎢 Creator: Yaser Abu-Mostafa - LFD Lecture 9

Logistic regression algorithm



2: for
$$t = 0, 1, 2, \dots$$
 do

$$\nabla E_{\text{in}} = -\frac{1}{N} \sum_{n=1}^{N} \frac{y_n \mathbf{x}_n}{1 + e^{y_n \mathbf{w}^{\mathsf{T}}(t) \mathbf{x}_n}}$$

4 Update the weights: $\mathbf{w}(t+1) = \mathbf{w}(t) - \eta \nabla E_{\mathrm{in}}$

- 5: Iterate to the next step until it is time to stop
- 6: Return the final weights ${f w}$

