Nonlinear transforms

$$\mathbf{x} = (x_0, x_1, \cdots, x_d) \xrightarrow{\Phi} \mathbf{z} = (z_0, z_1, \cdots, z_{\tilde{d}})$$

Each
$$z_i = \phi_i(\mathbf{x})$$
 $\mathbf{z} = \Phi(\mathbf{x})$

Example:
$$\mathbf{z} = (1, x_1, x_2, x_1 x_2, x_1^2, x_2^2)$$

Final hypothesis $g(\mathbf{x})$ in \mathcal{X} space:

$$\operatorname{sign}\left(\tilde{\mathbf{w}}^{\mathsf{T}}\Phi(\mathbf{x})\right)$$
 or $\tilde{\mathbf{w}}^{\mathsf{T}}\Phi(\mathbf{x})$

The price we pay

$$\mathbf{x} = (x_0, x_1, \cdots, x_d) \xrightarrow{\Phi} \mathbf{z} = (z_0, z_1, \cdots, z_{\tilde{d}})$$

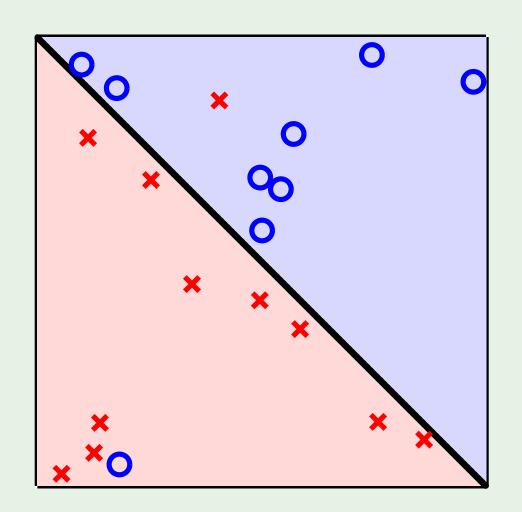
$$\downarrow \qquad \qquad \downarrow$$

$$\mathbf{w} \qquad \qquad \tilde{\mathbf{w}}$$

 $d_{
m VC} < ilde{d} + 1$

 $d_{\rm VC} = d + 1$

Two non-separable cases





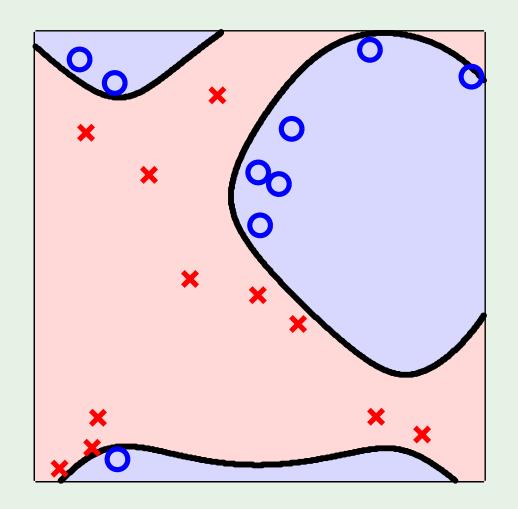
© A Creator: Yaser Abu-Mostafa - LFD Lecture 9

First case

Use a linear model in ${\cal X}$; accept $E_{
m in}>0$

or

Insist on $E_{
m in}=0$; go to high-dimensional ${\cal Z}$



© M Creator: Yaser Abu-Mostafa - LFD Lecture 9

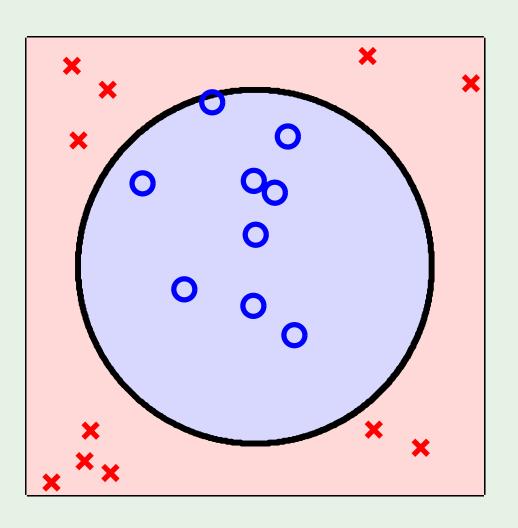
Second case

$$\mathbf{z} = (1, x_1, x_2, x_1 x_2, x_1^2, x_2^2)$$

Why not:
$$\mathbf{z} = (1, x_1^2, x_2^2)$$

or better yet:
$$\mathbf{z} = (1, x_1^2 + x_2^2)$$

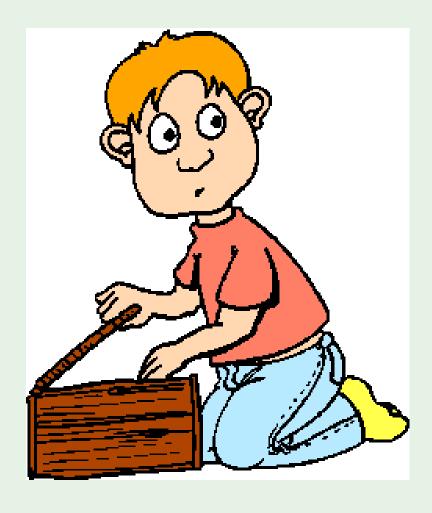
or even:
$$\mathbf{z} = (x_1^2 + x_2^2 - 0.6)$$



Lesson learned

Looking at the data *before* choosing the model can be hazardous to your $E_{
m out}$

Data snooping



Learning From Data - Lecture 9