Example: sine target $$f:[-1,1] \to \mathbb{R}$$ $f(x) = \sin(\pi x)$ Only two training examples! N=2 Two models used for learning: $$\mathcal{H}_0$$: $h(x) = b$ $$\mathcal{H}_1$$: $h(x) = ax + b$ Which is better, \mathcal{H}_0 or \mathcal{H}_1 ? ## Approximation - \mathcal{H}_0 versus \mathcal{H}_1 \mathcal{H}_0 \mathcal{H}_1 ## Learning - \mathcal{H}_0 versus \mathcal{H}_1 \mathcal{H}_0 \mathcal{H} # Bias and variance - \mathcal{H}_0 # Bias and variance - \mathcal{H}_1 ## and the winner is ... #### Lesson learned Match the 'model complexity' to the data resources, not to the target complexity © M Creator: Yaser Abu-Mostafa - LFD Lecture 8