## Approximation-generalization tradeoff Small $E_{ m out}$ : good approximation of f out of sample. More complex $\mathcal{H} \Longrightarrow$ better chance of approximating f Less complex $\mathcal{H}\Longrightarrow$ better chance of $\mathbf{generalizing}$ out of sample $| deal \ \mathcal{H} = \{f\} \qquad \text{winning lottery ticket } \odot$ ## Quantifying the tradeoff VC analysis was one approach: $E_{ m out} \leq E_{ m in} + \Omega$ Bias-variance analysis is another: decomposing $E_{ m out}$ into - 1. How well ${\mathcal H}$ can approximate f - 2. How well we can zoom in on a good $h \in \mathcal{H}$ Applies to real-valued targets and uses squared error ### Start with $E_{\text{out}}$ $$E_{\text{out}}(g^{(\mathcal{D})}) = \mathbb{E}_{\mathbf{x}} \Big[ \big( g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x}) \big)^2 \Big]$$ $$\mathbb{E}_{\mathcal{D}} \left[ E_{\text{out}}(g^{(\mathcal{D})}) \right] = \mathbb{E}_{\mathcal{D}} \left[ \mathbb{E}_{\mathbf{x}} \left[ \left( g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x}) \right)^{2} \right] \right]$$ $$= \mathbb{E}_{\mathbf{x}} \left[ \mathbb{E}_{\mathcal{D}} \left[ \left( g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x}) \right)^{2} \right] \right]$$ Now, let us focus on: $$\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x})\right)^2\right]$$ ## The average hypothesis To evaluate $$\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x})-f(\mathbf{x})\right)^2\right]$$ we define the 'average' hypothesis $\bar{g}(\mathbf{x})$ : $$\bar{g}(\mathbf{x}) = \mathbb{E}_{\mathcal{D}} \left[ g^{(\mathcal{D})}(\mathbf{x}) \right]$$ Imagine **many** data sets $\mathcal{D}_1, \mathcal{D}_2, \cdots, \mathcal{D}_K$ $$\bar{g}(\mathbf{x}) \approx \frac{1}{K} \sum_{k=1}^{K} g^{(\mathcal{D}_k)}(\mathbf{x})$$ # Using $\bar{g}(\mathbf{x})$ $$\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x})\right)^{2}\right] = \mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - \bar{g}(\mathbf{x}) + \bar{g}(\mathbf{x}) - f(\mathbf{x})\right)^{2}\right]$$ $$= \mathbb{E}_{\mathcal{D}} \left[ \left( g^{(\mathcal{D})}(\mathbf{x}) - \bar{g}(\mathbf{x}) \right)^2 + \left( \bar{g}(\mathbf{x}) - f(\mathbf{x}) \right)^2 \right]$$ + 2 $$\left(g^{(\mathcal{D})}(\mathbf{x}) - \bar{g}(\mathbf{x})\right) \left(\bar{g}(\mathbf{x}) - f(\mathbf{x})\right)$$ $$= \mathbb{E}_{\mathcal{D}} \left[ \left( g^{(\mathcal{D})}(\mathbf{x}) - \bar{g}(\mathbf{x}) \right)^2 \right] + \left( \bar{g}(\mathbf{x}) - f(\mathbf{x}) \right)^2$$ #### Bias and variance $$\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x})\right)^{2}\right] = \underbrace{\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - \bar{g}(\mathbf{x})\right)^{2}\right]}_{\mathsf{var}(\mathbf{x})} + \underbrace{\left(\bar{g}(\mathbf{x}) - f(\mathbf{x})\right)^{2}}_{\mathsf{bias}(\mathbf{x})}$$ Therefore, $$\mathbb{E}_{\mathcal{D}}\left[E_{\mathrm{out}}(g^{(\mathcal{D})})\right] = \mathbb{E}_{\mathbf{x}}\left[\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x})\right)^2\right]\right]$$ $$= \mathbb{E}_{\mathbf{x}}[\mathsf{bias}(\mathbf{x}) + \mathsf{var}(\mathbf{x})]$$ $$=$$ bias $+$ var 8/22 ### The tradeoff $$\mathsf{bias} = \mathbb{E}_{\mathbf{x}} \left[ \left( \bar{g}(\mathbf{x}) - f(\mathbf{x}) \right)^2 \right]$$ $$\mathsf{var} = \mathbb{E}_{\mathbf{x}} \left[ \mathbb{E}_{\mathcal{D}} \left[ \left( g^{(\mathcal{D})}(\mathbf{x}) - \bar{g}(\mathbf{x}) \right)^2 \right] \right]$$ $\mathcal{H} \uparrow$