Outline

• The definition

VC dimension of perceptrons

Interpreting the VC dimension

• Generalization bounds

1. Degrees of freedom

Parameters create degrees of freedom

of parameters: analog degrees of freedom

 $d_{\rm VC}$: equivalent 'binary' degrees of freedom

© A Creator: Yaser Abu-Mostafa - LFD Lecture 7

The usual suspects

Positive rays ($d_{VC} = 1$):

$$h(x) = -1$$

$$h(x) = +1$$

Positive intervals ($d_{VC} = 2$):

$$h(x) = -1$$
 $h(x) = +1$ $h(x) = -1$

Not just parameters

Parameters may not contribute degrees of freedom:

 $d_{
m VC}$ measures the **effective** number of parameters

2. Number of data points needed

Two small quantities in the VC inequality:

$$\mathbb{P}[|E_{\text{in}}(g) - E_{\text{out}}(g)| > \epsilon] \le 4m_{\mathcal{H}}(2N)e^{-\frac{1}{8}\epsilon^2 N}$$

If we want certain ϵ and δ , how does N depend on d_{VC} ?

Let us look at

$$N^{\mathbf{d}}e^{-N}$$

$$N^{\mathbf{d}}e^{-N}$$

Fix
$$N^{\mathbf{d}}e^{-N} = \text{small value}$$

How does N change with d?

Rule of thumb:

$$N \geq 10 d_{\rm VC}$$

