Definition of VC dimension

The VC dimension of a hypothesis set $\mathcal{H}_{,}$ denoted by $d_{\rm VC}(\mathcal{H})$, is

the largest value of N for which $m_{\mathcal{H}}(N) = 2^N$

"the most points \mathcal{H} can shatter"

 $N \leq d_{\mathrm{VC}}(\mathcal{H}) \implies \mathcal{H}$ can shatter N points $k > d_{
m VC}(\mathcal{H}) \implies k$ is a break point for \mathcal{H}

C A Creator: Yaser Abu-Mostafa - LFD Lecture 7

The growth function

In terms of a break point k:

 $m_{\mathcal{H}}(N) \leq \sum_{i=0}^{k-1} \binom{N}{i}$

In terms of the VC dimension $d_{\rm VC}$:

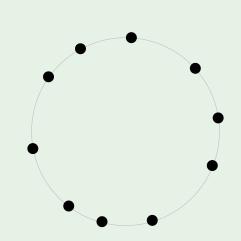
 $m_{\mathcal{H}}(N) \leq \sum_{i=0}^{a_{\mathrm{VC}}} \binom{N}{i}$ maximum power is $N^{d_{
m VC}}$

Examples

•
$$\mathcal{H}$$
 is positive rays:

•
$$\mathcal{H}$$
 is convex sets:

$$d_{
m VC}=\infty$$



$$d_{
m VC}=1$$

$$d_{\rm VC}=3$$

VC dimension and learning

 $d_{\rm VC}(\mathcal{H})$ is finite $\implies g \in \mathcal{H}$ will generalize

- Independent of the **learning algorithm**
- Independent of the input distribution
- Independent of the target function

