Back to the big picture

Remember this inequality?

$$\mathbb{P}\left[\left|E_{\rm in} - E_{\rm out}\right| > \epsilon\right] \le 2M e^{-2\epsilon^2 N}$$

0

What happens if $m_{\mathcal{H}}(N)$ replaces M?

$$m_{\mathcal{H}}(N)$$
 polynomial \implies Good!

Just prove that $m_{\mathcal{H}}(N)$ is polynomial?

C A Creator: Yaser Abu-Mostafa - LFD Lecture 5

Outline

- From training to testing
- Illustrative examples
- Key notion: **break point**
- Puzzle

Break point of ${\mathcal H}$

Definition:

If no data set of size k can be shattered by \mathcal{H} , then k is a *break point* for \mathcal{H}

$$m_{\mathcal{H}}(k) < 2^k$$

For 2D perceptrons, k=4

A bigger data set cannot be shattered either

Break point - the 3 examples

• Positive rays
$$m_{\mathcal{H}}(N) = N + 1$$

break point k = 2

• Positive intervals $m_{\mathcal{H}}(N) = \frac{1}{2}N^2 + \frac{1}{2}N + 1$

break point k = 3

 \bullet Convex sets $m_{\mathcal{H}}(N)=2^N$

break point $k=\infty$ '

Main result

No break point $\implies m_{\mathcal{H}}(N) = 2^N$

Any break point $\implies m_{\mathcal{H}}(N)$ is **polynomial** in N