Outline

- From training to testing
- Illustrative examples
- Key notion: break point
- Puzzle

Example 1: positive rays

 \mathcal{H} is set of $h: \mathbb{R} \to \{-1, +1\}$

$$h(x) = \operatorname{sign}(x - a)$$

$$m_{\mathcal{H}}(N) = N + 1$$

© ₱ Creator: Yaser Abu-Mostafa - LFD Lecture 5

Example 2: positive intervals

 \mathcal{H} is set of $h: \mathbb{R} \to \{-1, +1\}$

Place interval ends in two of N+1 spots

$$m_{\mathcal{H}}(N) = \binom{N+1}{2} + 1 = \frac{1}{2}N$$

© 🎢 Creator: Yaser Abu-Mostafa - LFD Lecture 5

$N^2 + \frac{1}{2}N + 1$

Example 3: convex sets

 \mathcal{H} is set of $h \colon \mathbb{R}^2 \to \{-1, +1\}$

 $h(\mathbf{x}) = +1$ is convex

 $m_{\mathcal{H}}(N) = 2^N$

The N points are 'shattered' by convex sets

The 3 growth functions

• \mathcal{H} is positive rays:

$$m_{\mathcal{H}}(N) = N + 1$$

• \mathcal{H} is positive intervals:

$$m_{\mathcal{H}}(N) = \frac{1}{2}N^2 + \frac{1}{2}N + 1$$

• \mathcal{H} is convex sets:

$$m_{\mathcal{H}}(N) = 2^N$$