What can we replace M with?

Instead of the whole input space,

we consider a finite set of input points,

and count the number of dichotomies

Dichotomies: mini-hypotheses

A hypothesis $h: \mathcal{X} \rightarrow \{-1, +1\}$

A dichotomy $h: \{\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_N\} \rightarrow \{-1, +1\}$

Number of hypotheses $|\mathcal{H}|$ can be infinite

Number of dichotomies $|\mathcal{H}(\mathbf{x}_1,\mathbf{x}_2,\cdots,\mathbf{x}_N)|$ is at most 2^N

Candidate for replacing M

The growth function

The growth function counts the $\underline{\mathsf{most}}$ dichotomies on any N points

$$m_{\mathcal{H}}(N) = \max_{\mathbf{x}_1, \dots, \mathbf{x}_N \in \mathcal{X}} |\mathcal{H}(\mathbf{x}_1, \dots, \mathbf{x}_N)|$$

The growth function satisfies:

$$m_{\mathcal{H}}(N) \leq 2^N$$

Let's apply the definition.

Applying $m_{\mathcal{H}}(N)$ definition - perceptrons

$$m_{\mathcal{H}}(3) = 8$$

$$m_{\mathcal{H}}(4) = 14$$