Noisy targets

The 'target function' is not always a function

Consider the credit-card approval:

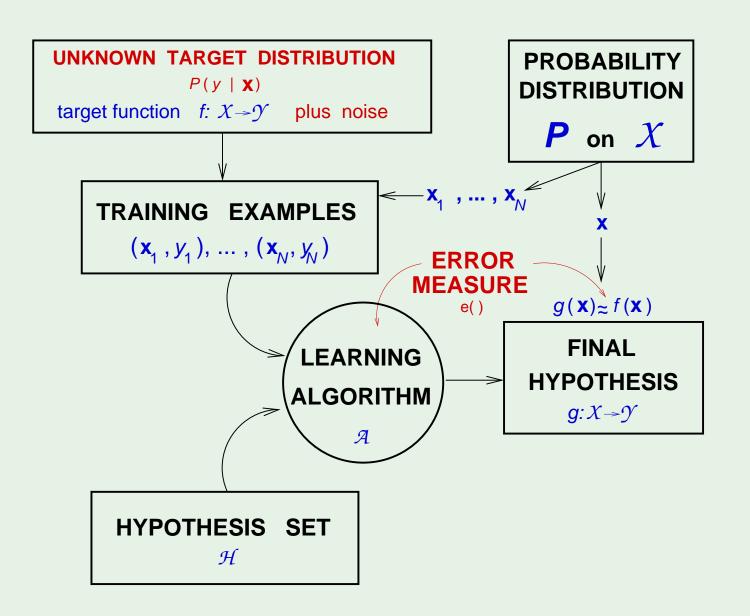
age	23 years
annual salary	\$30,000
years in residence	1 year
years in job	1 year
current debt	\$15,000
• • •	• • •

Target 'distribution'

Instead of $y = f(\mathbf{x})$, we use target distribution:

$$P(y \mid \mathbf{x})$$

 (\mathbf{x}, y) is now generated by the joint distribution:


$$P(\mathbf{x})P(y \mid \mathbf{x})$$

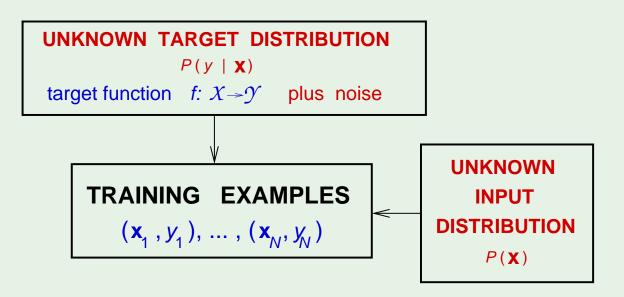
Noisy target = deterministic target $f(\mathbf{x}) = \mathbb{E}(y|\mathbf{x})$ plus noise $y - f(\mathbf{x})$

Deterministic target is a special case of noisy target:

$$P(y \mid \mathbf{x})$$
 is zero except for $y = f(\mathbf{x})$

The learning diagram - including noisy target

© A Creator: Yaser Abu-Mostafa - LFD Lecture 4


Distinction between $P(y|\mathbf{x})$ and $P(\mathbf{x})$

Both convey probabilistic aspects of ${f x}$ and y

The target distribution $P(y \mid \mathbf{x})$ is what we are trying to learn

The input distribution $P(\mathbf{x})$ quantifies relative importance of \mathbf{x}

Merging $P(\mathbf{x})P(y|\mathbf{x})$ as $P(\mathbf{x},y)$ mixes the two concepts

© A Creator: Yaser Abu-Mostafa - LFD Lecture 4