A related experiment

- Consider a 'bin' with red and green marbles.
 - $\mathbb{P}[\text{ picking a red marble }] = \mu$

 $\mathbb{P}[\text{ picking a green marble }] = 1-\mu$

- The value of μ is <u>unknown</u> to us.
- We pick N marbles independently.
- The fraction of red marbles in sample = ν

 μ = probability of red marbles

SAMPLE V = fraction of red marbles

3/17

Does ν say anything about μ ?

No!

Sample can be mostly green while bin is mostly red.

Yes!

Sample frequency u is likely close to bin frequency μ .

possible versus probable

BIN

 μ = probability of red marbles

SAMPLE V = fraction of red marbles

4/17

What does ν say about μ ?

In a big sample (large N), u is probably close to μ (within ϵ).

Formally,

$$\mathbb{P}\left[\left|\nu-\mu\right| > \epsilon\right] \le 2e^{-2\epsilon^2 N}$$

This is called **Hoeffding's Inequality**.

In other words, the statement '' $\mu =
u$ '' is P.A.C.

5/17